Publications by authors named "Sivasubramanian Baskar"

Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ-receptor dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells.

View Article and Find Full Text PDF

Purpose: To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL).

Patients And Methods: In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients.

View Article and Find Full Text PDF

Purpose: In chronic lymphocytic leukemia (CLL), the T-cell receptor (TCR) repertoire is skewed and tumor-derived antigens are hypothesized as drivers of oligoclonal expansion. Ibrutinib, a standard treatment for CLL, inhibits not only Bruton tyrosine kinase of the B-cell receptor signaling pathway, but also IL2-inducible kinase of the TCR signaling pathway. T-cell polarization and activation are affected by ibrutinib, but it is unknown whether T cells contribute to clinical response.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) occurs in 2 major forms: aggressive and indolent. Low miR-29b expression in aggressive CLL is associated with poor prognosis. Indiscriminate miR-29b overexpression in the B-lineage of mice causes aberrance, thus warranting the need for selective introduction of miR-29b into B-CLL cells for therapeutic benefit.

View Article and Find Full Text PDF

Although the 5-year survival rate of chronic lymphocytic leukemia (CLL) patients has risen to >80%, the only potentially curative treatment is allogeneic hematopoietic stem cell transplantation (alloHSCT). To identify possible new monoclonal antibody (mAb) drugs and targets for CLL, we previously developed a phage display-based human mAb platform to mine the antibody repertoire of patients who responded to alloHSCT. We had selected a group of highly homologous post-alloHSCT mAbs that bound to an unknown CLL cell surface antigen.

View Article and Find Full Text PDF

The Bruton tyrosine kinase inhibitor ibrutinib induces high rates of clinical response in chronic lymphocytic leukemia (CLL). However, there remains a need for adjunct treatments to deepen response and to overcome drug resistance. Blinatumomab, a CD19/CD3 bispecific antibody (bsAb) designed in the BiTE (bispecific T-cell engager) format, is approved by the US Food and Drug Administration for the treatment of relapsed or refractory B-cell precursor acute lymphoblastic leukemia.

View Article and Find Full Text PDF

Purpose: ROR1, a receptor in the noncanonical Wnt/planar cell polarity (PCP) pathway, is upregulated in malignant B cells of chronic lymphocytic leukemia (CLL) patients. It has been shown that the Wnt/PCP pathway drives pathogenesis of CLL, but which factors activate the ROR1 and PCP pathway in CLL cells remains unclear.

Experimental Design: B lymphocytes from the peripheral blood of CLL patients were negatively separated using RosetteSep (StemCell) and gradient density centrifugation.

View Article and Find Full Text PDF

Mantle-cell lymphoma (MCL) remains incurable despite numerous therapeutic advances. OSU-2S, a novel nonimmunosuppressive FTY720 (Fingolimod) derivative, exhibits potent cytotoxicity in MCL cell lines and primary cells. OSU-2S increased the surface expression of CD74, a therapeutic antibody target in MCL cells.

View Article and Find Full Text PDF

Background: Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL), short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs) that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies.

View Article and Find Full Text PDF

The dynamic expression of various phenotypic markers during B cell development not only defines the particular stage in ontogeny but also provides the necessary growth, differentiation, maturation and survival signals. When a B cell at any given stage becomes cancerous, these cell surface molecules, intracellular signaling molecules, and the over-expressed gene products become favorite targets for potential therapeutic intervention. Various adaptive and adoptive immunotherapeutic approaches induce T cell and antibody responses against cancer cells, and successful remission leading to minimal residual disease has been obtained.

View Article and Find Full Text PDF

The selective cell surface expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) has made ROR1 a novel and promising target for therapeutic monoclonal antibodies (mAbs). Four mouse mAbs generated by hybridoma technology exhibited specific binding to human ROR1. Epitope mapping studies showed that two mAbs (2A2 and 2D11) recognized N-terminal epitopes in the extracellular region of ROR1 and the other two (1A1 and 1A7) recognized C-terminal epitopes.

View Article and Find Full Text PDF

Background: Based on its selective cell surface expression in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), receptor tyrosine kinase ROR1 has recently emerged as a promising target for therapeutic monoclonal antibodies (mAbs). To further assess the suitability of ROR1 for targeted therapy of CLL and MCL, a panel of mAbs was generated and its therapeutic utility was investigated.

Methodology And Principal Findings: A chimeric rabbit/human Fab library was generated from immunized rabbits and selected by phage display.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γc(null) mice under the influence of activated CLL-derived T lymphocytes.

View Article and Find Full Text PDF

Background: Similar to a subset of human patients who progress from monoclonal B lymphocytosis (MBL) to chronic lymphocytic leukemia (CLL), New Zealand Black (NZB) mice have an age-associated progression to CLL. The murine disease is linked to a genetic abnormality in microRNA mir-15a/16-1 locus, resulting in decreased mature miR-15a/16.

Methods: Spleens of aging NZB were analyzed for the presence of B-1 cells via flow cytometry and for the presence of a side population (SP) via the ability of cells to exclude Hoechst 33342 dye.

View Article and Find Full Text PDF

Monoclonal antibodies and T cells modified to express chimeric antigen receptors specific for B-cell lineage surface molecules such as CD20 exert antitumor activity in B-cell malignancies, but deplete normal B cells. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) was identified as a highly expressed gene in B-cell chronic lymphocytic leukemia (B-CLL), but not normal B cells, suggesting it may serve as a tumor-specific target for therapy. We analyzed ROR1-expression in normal nonhematopoietic and hematopoietic cells including B-cell precursors, and in hematopoietic malignancies.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells.

View Article and Find Full Text PDF

In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet.

View Article and Find Full Text PDF

Purpose: Gene expression profiling identified receptor tyrosine kinase ROR1, an embryonic protein involved in organogenesis, as a signature gene in B-cell chronic lymphocytic leukemia (B-CLL). To assess the suitability of ROR1 as a cell surface antigen for targeted therapy of B-CLL, we carried out a comprehensive analysis of ROR1 protein expression.

Experimental Design: Peripheral blood mononuclear cells, sera, and other adult tissues from B-CLL patients and healthy donors were analyzed qualitatively and quantitatively for ROR1 protein expression by flow cytometry, cell surface biotinylation, Western blotting, and ELISA.

View Article and Find Full Text PDF

Purpose: The idiotype (Id) of the immunoglobulin on a given B-cell malignancy is a clonal marker that can serve as a tumor-specific antigen. We developed a novel vaccine formulation by incorporating Id protein with liposomal lymphokine that was more potent than a prototype, carrier-conjugated Id protein vaccine in preclinical studies. In the present study, we evaluated the safety and immunogenicity of this vaccine in follicular lymphoma patients.

View Article and Find Full Text PDF

Nonimmunogenic antigens can be efficiently rendered immunogenic by targeting them to antigen-presenting cells via differentially expressed chemokine receptors. For example, self-tumor or HIV antigens genetically fused with proinflammatory chemoattractants elicit potent immune responses and protective antitumor immunity in mice. Herein we demonstrate that the mechanism by which chemokine fusions elicit responses is efficient uptake, processing, and presentation of antigens via the major histocompatibility complex class II pathway.

View Article and Find Full Text PDF

The clonotypic surface Ig receptor expressed by malignant B cells, idiotype, is a tumor-specific antigen and an attractive target for active immunotherapy. While Ab's specific for tumor idiotype have been well described in patients with B cell malignancies, the precise antigenic epitopes in human idiotype recognized by autologous T cells remain largely unknown. We report here that T cell lines generated from lymphoma patients actively immunized with idiotype protein specifically recognized multiple, unique immunodominant epitopes in autologous tumor idiotype.

View Article and Find Full Text PDF

In vitro priming of T cells with dendritic cells (DC) pulsed with clinically relevant, but weak antigens such as tumor idiotype (Id), is an attractive strategy to generate tumor-specific T lymphocytes. In order to enhance the specific antitumor effect of allogeneic stem cell grafts, we investigated whether induction of tumor specific T cells using autologous DC pulsed with patient's myeloma Id could be maintained and potentiated by in vitro priming. For induction of T cells, DC (5 x 10(5)/well) were cultured with autologous nonadherent cells (DoNA) (5 x 10(6)/well) and antigen (TT10 microg/ml, KLH 100 microg/ml and Id 100 microg/ml).

View Article and Find Full Text PDF