Publications by authors named "Sivasamy A"

Article Synopsis
  • * A novel RGO-DyO nanocomposite was created with advanced methods, showing a high degradation efficiency of nearly 98.1% for methylene blue dye within just 60 minutes of solar exposure.
  • * The RGO-DyO catalyst demonstrated excellent stability for reuse, maintaining over 90% efficiency after three cycles, indicating its potential as an eco-friendly solution for treating wastewater and organic dyes.
View Article and Find Full Text PDF

Emerging contaminants are diverse ecotoxic materials requiring unique treatment for removal. Asphaltenes are environmentally hazardous carbon-rich solid waste product of the petroleum industry. In the current work, asphaltene-derived activated carbon (AC) was loaded with silver (Ag/AC) and used to remove amoxicillin (AMX) and tetracycline (TC) from aqueous phase.

View Article and Find Full Text PDF

Semiconductor photocatalysis is the most efficient advanced oxidation processes for wastewater treatment. A new carbon-based photocatalyst bismuth oxide/multi-walled carbon nanotube (BiO/MWCNT) nanocomposite has a considerable impact on improving photocatalytic performance. BiO/MWCNTs (BMC) nanocomposite was prepared through the hydrothermal processing with 2.

View Article and Find Full Text PDF

Developing and implementing visible light active organic-inorganic hybrid semiconductor nanomaterials with enhanced photocatalytic properties find newer environmental and energy treatment capabilities. Here, we are reporting polymeric g-CN layers coated with different propositions of erbium oxide nanoparticles, characterized using XPS, UV-Vis-DRS, FT-IR, HR-TEM, FE-SEM, elemental mapping, XRD and surface area techniques and its photocatalytic activities were evaluated under visible light irradiations. The hybrid nanocomposite materials possess better crystalline nature and erbium oxide particles were on the surface of polymeric g-CN.

View Article and Find Full Text PDF

To study their physicochemical and antimicrobial properties, zinc oxide nanoparticles were synthesized using a simple chemical route and 4-dimethylaminobenzaldehyde (4DB) as an organic additive. ZnO nanoparticles were characterized with XRD analysis, which confirmed the presence of a hexagonal wurtzite structure with different crystalline sizes. The SEM morphology of the synthesized nanoparticles confirmed the presence of nanorods in both modifications of ZnO nanoparticles.

View Article and Find Full Text PDF

Herein we report a simple, single-step, cost-effective, environmentally friendly, and biocompatible approach using sodium salt of N-cholyl-L-cysteine (NaCysC) capped gold nanoclusters (AuNCs) with green emission properties at above the CMC in aqueous medium under UV-light irradiation. The primary and secondary CMC of NaCysC was found to be 4.6 and 10.

View Article and Find Full Text PDF

Hexagonal nanostructured cobalt oxide @ N-doped MWCNT /polypyyrole (CoO/PPy@N-MWCNT) composite was produced by an ultrasonication-mediated solvothermal method for electrochemical supercapacitor and glucose sensor applications. The structural and electrochemical properties of the CoO/PPy@N-MWCNT were confirmed by various spectroscopic and microscopic techniques. The as-prepared electrode showed an excellent capacitance of ∼872 F/g at 0.

View Article and Find Full Text PDF

In this study, a novel nanohybrid composite containing nitrogen-doped multiwalled carbon nanotubes/carboxymethylcellulose (N-MWCNT/CMC) was synthesized for supercapacitor applications. The synthesized composite materials were subjected to an ultrasonication-mediated solvothermal hydrothermal reaction. The synthesized nanohybrid composite electrode material was characterized using analytical methods to confirm its structure and morphology.

View Article and Find Full Text PDF

The porous materials of SnO@NGO composite was synthesized by thermal reduction process at 550 °C in presence ammonia and urea as catalyst. In this process, the higher electrostatic attraction between the SnO@NGO nanoparticles were anchored via thermal reduction reaction. These synthesized SnO@ NGO composites were confirmed by Raman, XRD, XPS, HR-TEM, and EDX results.

View Article and Find Full Text PDF

Currently there is an increased demand for synthetic bone substitute materials (SBSMs) due to avoidance of donor-site surgery and morbidity. Attempts are done to create SBSM mimicking the bone microarchitecture for enhanced healing. In this study, the authors nanoengineered polycaprolactone (PCL) and nanohydroxyapatite (nHAp) composite scaffold by electrospinning.

View Article and Find Full Text PDF

Graphene oxide (GO) was prepared from commercially available graphite powder. Porous iron oxide ribbons were grown on the surface of GO by solvothermal process. The prepared GO-FeO nanocomposites are characterized by FT-IR, XRD, VSM, SEM, TEM, Raman spectroscopy, surface functionality and zero point charge studies.

View Article and Find Full Text PDF

Water pollution is a cause for serious concern in today's world. A major contributor to water pollution is industrial effluents containing dyes and other organic molecules. Waste water treatment has become a priority area in today's applied scientific research as it seeks to minimize the toxicity of the effluents being discharged and increase the possibility of water recycling.

View Article and Find Full Text PDF

Stringent Environmental standards followed worldwide led to the emergence of advanced oxidation process for the removal of toxic contaminants from water and wastewater. Among all semiconductor photocatalysts have great potential in the degradation of organic and inorganic pollutants into lesser harmful products under visible light irradiations. The present research work describes the synthesis of Cu doped ZnO (CuDZ) via a co-precipitation method to attain high crystallized powder confirmed by XRD analysis.

View Article and Find Full Text PDF

Advanced Oxidation Process (AOP) technologies are considered to be better technique for the degradation or mineralization of many recalcitrant compounds and pollutants. In the present study heterogeneous sonocatalytic degradation of a model organic compound such as Malachite green oxalate (MGO) was carried out in the aqueous phase. Zinc oxide nanorods were prepared by precipitation method employing zinc acetates as precursors and were characterized by FT-IR, XRD, FE-SEM and EDAX analysis.

View Article and Find Full Text PDF

Semiconductor zinc oxide nanorods (NRZnO) were prepared by sol-gel technique using zinc acetate as the precursor and ammonia as the precipitating agent. The prepared photocatalyst were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS), X-ray photoelectron spectroscopy (XPS), Field Emission-Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM), High Resolution-Tunneling Microscope (HR-TEM), Brunauer, Emmett and Teller (BET) and electron paramagnetic resonance spectroscopy (EPR) analysis. Particle size of the prepared photocatalyst was established by XRD and FE-SEM analysis.

View Article and Find Full Text PDF

The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models.

View Article and Find Full Text PDF

Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater.

View Article and Find Full Text PDF

Activated carbon prepared from corn cob biomass, magnetized by magnetite nanoparticles (MCCAC) was used for the adsorption of hexavalent chromium from aqueous solution. The adsorbent was characterized by SEM, TEM, XRD, VSM, surface functionality and zero-point charge. The iron oxide nanoparticles were of 50 nm sizes and the saturation magnetization value for the adsorbent is 48.

View Article and Find Full Text PDF

Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge.

View Article and Find Full Text PDF

Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol-gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the γ-aminopropyltriethoxy silane as crosslinking agent by in situ sol-gel process via covalent bonding between the organic-inorganic hybrid nanocomposites.

View Article and Find Full Text PDF

Introduction: The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses.

Materials And Methods: Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis.

View Article and Find Full Text PDF

Purpose: Biosorption is an emerging, eco-friendly and economical method for treating the wastewater effluents. Compared to many other biological materials, algae biomass proved to be the better biosorbent due to the presence of cell wall polymers in them.

Methods: Algal biomasses namely Enteromorpha flexuosa and Gracilaria corticata were dried, crushed and used as biosorbents.

View Article and Find Full Text PDF

Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.

View Article and Find Full Text PDF

Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G.

View Article and Find Full Text PDF

In the present study, chemically prepared activated carbon derived from Borassus aethiopum flower was used as adsorbent. Batch adsorption studies were performed for the removal of Malachite Green (MG) from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial MG concentration and temperature with three different particle sizes such as 100 microm, 600 microm and 1000 microm. The zero point charge was 2.

View Article and Find Full Text PDF