Publications by authors named "Sivaranjani T"

Article Synopsis
  • The photoelectrocatalytic advanced oxidation process (PEAOP) relies on advanced photoanodes to effectively break down complex pollutants in industrial wastewater.
  • A new 2D WO/MXene heteronanostructure was created to enhance oxidation efficiency, successfully oxidizing phenol and arsenic (III) to non-toxic forms using visible light.
  • The WO/MXene photoanode demonstrated high performance and recyclability, highlighting its potential for economical and energy-efficient water purification solutions.
View Article and Find Full Text PDF

The objective of this investigation is to learn more about the structural, electrical, spectroscopic, and physiochemical characteristics of biologically active cyano-4'-hydroxybiphenyl (CHBP). The title molecule's optimized conformational analysis was computed using the DFT/B3LYP/6-311++G (d, p) level of theory. The observed wavenumbers were compared with theoretical FT-IR and FT-Raman spectra.

View Article and Find Full Text PDF

The molecule of 2-Biphenyl Carboxylic Acid (2BCA), which contains peculiar features, was explored making use of density functional theory (DFT) and experimental approaches in the area of quantum computational research. The optimised structure, atomic charges, vibrational frequencies, electrical properties, electrostatic potential surface (ESP), natural bond orbital analysis and potential energy surface (PES) were obtained applying the B3LYP approach with the 6-311++ G (d,p) basis set..

View Article and Find Full Text PDF

Developing high-performance and durable catalysts presents a significant challenge for oxidizing toxic inorganic and pharmaceutical compounds in wastewater. Recently, there has been a surge in the development of new heterogeneous catalysts for degrading pharmaceutical compounds, driven by advancements in electrocatalysts and photoelectrocatalysts. In this study, a plasmonic Ag nanoparticles decorated CoFeO@TiO heteronanostructures have been successfully designed to fabricate a high-performing photoelectrode for the oxidation of pharmaceutical compounds.

View Article and Find Full Text PDF

The discharge of amoxicillin (AMX) from pharmaceutical intermediates has adverse effects on aquatic ecosystems. The elimination of AMX requires advanced oxidation processes (AOPs) that utilize high-performance photocatalysts. Furthermore, the design of highly visible light photocatalysts for AOPs demands both cost-effectiveness and efficiency.

View Article and Find Full Text PDF