Publications by authors named "Sivaraman Prabhakar"

Pesticide contamination in wastewater poses a significant environmental challenge, driven by extensive agricultural use. This study evaluates the removal of chlorpyrifos (CPS) using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column, achieving a remarkable 95-98% removal efficiency. Compared to conventional adsorbents like activated carbon, which typically show CPS adsorption capacities ranging from 50-70 mg g⁻ under similar conditions, the biochar alginate beads demonstrate better performance with a sorption capacity of 91.

View Article and Find Full Text PDF

In this work, the phase inversion approach is used to synthesize a blended mixed matrix membrane from cellulose acetate polymer and sugarcane bagasse biochar. The experiments were carried out to estimate the extent of chlorpyrifos (CPS) pesticide removal. The results showed that the removal rate was more than 99% in making the filtered water suitable enough for domestic use.

View Article and Find Full Text PDF

Industrial contaminants such as dyes and intermediates are released into water bodies, making the water unfit for human use. At the same time large amounts of food wastes accumulate near the work places, residential complexes etc. polluting the air due to putrefaction.

View Article and Find Full Text PDF

This work describes the development of a miniaturized paper-based pH detection platform using natural dye extracted from red cabbage (Brassica oleracea). The easily available paper was used as a substrate and the requisite patterned zone was created with the aid of a punching machine. Experimental parameters were optimized to obtain the best signal readout.

View Article and Find Full Text PDF

The ubiquitous presence of microplastics as contaminants in the ecosystem has become a matter of environmental concern gaining considerable attention in the research community as well as public arena. Lack of efficient collection and improper management of plastic have resulted in the enormous amounts of plastic wastes landing into the marine systems with oceans being the ultimate sink. Due to non-biodegradability, these plastics break down into smaller fragments over a period of time leading to consumption by aquatic species, threatening marine life.

View Article and Find Full Text PDF

There is a growing demand for vegetal food having health benefits such as improving the immune system. This is due in particular to the presence of polyphenols present in small amounts in many fruits, vegetables and functional foods. Extracting polyphenols is challenging because extraction techniques should not alter food quality.

View Article and Find Full Text PDF

This paper highlights the efficacy of carboxymethyl chitosan (CMCh), a bio-degradable water-soluble derivative of chitosan for the separation of a mixture of heavy metal ions such as copper, nickel, zinc and lead from aqueous streams, as they constitute, the major industrial pollutants present in wastewater. The experimental studies are conducted using commercially available ultrafiltration module using synthetic solutions of the contaminants. The design of experiments was performed by Response Surface Methodology (RSM) with split-plot D-optimal design.

View Article and Find Full Text PDF

Environmental considerations require disposal of the contaminants in a safe manner without causing any harm. Accordingly, the contaminants should be removed and recovered as value or disposed without any burden to the environment. In this context, natural biodegradable adsorbents could possibly be an answer as they get biodegraded along with the organic contaminants including phenol.

View Article and Find Full Text PDF

N‑N‑N‑triethylammonium chitosan (TEAC) and carboxymethyl chitosan (CMCh), the two water-soluble chitosan derivatives were utilized for the removal and recovery of heavy metals by size enhanced ultrafiltration (SEUF). The strong positive quaternary ammonium [-N(CH)] cation in TEAC interacts with Cr(VI), which exists as a strong chromate anion thereby enabling the efficient removal of chromate through ultrafiltration. CMCh consists of COOH and NH moieties, which facilitate interactions with heavy metals such as Cu(II) and Ni(II).

View Article and Find Full Text PDF

N, N, N-Triethyl ammonium functionalized cross-linked chitosan beads (TEACCB) was prepared by alkylation of glutaraldehyde cross-linked chitosan beads to remove nitrate from brackish water. Physico-chemical characteristics of TEACCB were analyzed using FTIR, SEM, EDAX, TGA, DTA, BET surface area, swelling ratio and pHzpc. The maximum nitrate removal capacity of TEACCB was 2.

View Article and Find Full Text PDF