Publications by authors named "Sivaraj Sundaram"

Background: Sodium-glucose cotransporter-2 inhibitors are an innovative diabetes treatment that lowers blood sugar levels without insulin. A growing body of evidence suggests that blood sugar levels are tightly correlated with uric acid levels in their blood and urine. To alleviate type 2 diabetes (T2DM) suffering, we tested dapagliflozin on serum and urinary uric acid levels of patients with T2DM and measured its efficacy in reducing uric acid levels.

View Article and Find Full Text PDF

Increasing evidence suggests that the brain plays a key role in glucose homeostasis, making it a potential target for the treatment of type 2 diabetes (T2D). Sun et al. recently reported that intracerebroventricular (ICV) administration of a single dose of fibroblast growth factor 4 (FGF4) can induce sustained T2D remission in mouse models in the absence of any risk of hypoglycemia.

View Article and Find Full Text PDF

Patients with inactive thyroid hormone (TH) transporter MCT8 display intellectual disability due to compromised central TH transport and action. As a therapeutic strategy, application of thyromimetic, MCT8-independent compounds Triac (3,5,3'-triiodothyroacetic acid), and Ditpa (3,5-diiodo-thyropropionic acid) was proposed. Here, we directly compared their thyromimetic potential in Mct8/Oatp1c1 double knock-out mice (Dko) modeling human MCT8 deficiency.

View Article and Find Full Text PDF

Hexokinase (HK)-1 mitochondrial-binding mechanisms and consequential physiological relevance remain unclear. Recently, De Jesus et al. studied myeloid cells with HK1 carrying mutated mitochondrial-binding domains (MBDs) and provided evidence that HK1 localization controls glucose metabolic fate.

View Article and Find Full Text PDF
Article Synopsis
  • Allan-Herndon-Dudley syndrome, caused by a deficiency in the MCT8 transporter, leads to significant X-linked intellectual and motor disabilities due to impaired transport of thyroid hormones to the brain.
  • Current treatments can improve physical symptoms but do not address neurological issues, prompting research into gene replacement therapy in mouse models.
  • The study found that targeting Mct8 expression in brain endothelial cells via gene therapy improved thyroid hormone levels in the brain and resulted in lasting enhancements in motor skills, highlighting a potential therapeutic approach for this condition.
View Article and Find Full Text PDF

Several studies have investigated if the levels of α-synuclein autoantibodies (α-syn AAb) differ in serum of Parkinson's disease (PD) patients and healthy subjects. Reproducible differences in their levels could serve as a biomarker for PD. The results of previous studies however remain inconclusive.

View Article and Find Full Text PDF

Mice lacking functional thyroid follicular cells, mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, mice should show deficits in the expression of Na currents and potentially also in the expression of Na/K-ATPases, which are necessary to maintain low intracellular Na levels.

View Article and Find Full Text PDF

Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus.

View Article and Find Full Text PDF

The underlying mechanism of oxytocin (OT) neurons in the development of social interaction remains unclear. In a recent study, Lewis et al. characterized OT neuronal subtypes and provided evidence that expression of the autism spectrum disorder (ASD) gene Fmr1 in parvocellular OT neurons is essential for peer-peer but not filial social interactions.

View Article and Find Full Text PDF

Objectives: Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1β.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH)-expressing neurons are key regulators of energy and glucose homeostasis. Here, we demonstrate that they provide dense projections to the median eminence (ME) in close proximity to tanycytes and fenestrated vessels. Chemogenetic activation of MCH neurons as well as optogenetic stimulation of their projections in the ME enhance permeability of the ME by increasing fenestrated vascular loops and enhance leptin action in the arcuate nucleus of the hypothalamus (ARC).

View Article and Find Full Text PDF

Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways.

View Article and Find Full Text PDF

Thyroid hormone (TH) transporters are required for cellular transmembrane passage of TH and are thus mandatory for proper TH metabolism and action. Consequently, inactivating mutations in TH transporters such as MCT8 or OATP1C1 can cause tissue- specific changes in TH homeostasis. As the most prominent example, patients with MCT8 mutations exhibit elevated serum T3 levels, whereas their CNS appear to be in a TH deficient state.

View Article and Find Full Text PDF

The sodium potassium ATPase (Na/K ATPase) is essential for the maintenance of a low intracellular Na and a high intracellular K concentration. Loss of function of the Na/K ATPase due to mutations in Na/K ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na/K ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na/K ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization.

View Article and Find Full Text PDF

Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6vp6rsia8g7hkd346er44rshcg2o2aa2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once