Sulfur mustard (SM), a blister agent and toxic chemical warfare compound, leads to injuries in the skin, eyes, and lungs, with early diagnosis being difficult because of its incubation period. Developing scavengers for sulfur mustard (SM) and its simulant, 2-chloroethylsulfide (CEES), is essential due to the severe and long-lasting toxic effects these compounds have on the human body. Existing scavengers like cysteine, sodium hydrosulfide (NaHS), and sodium thiosulfate cannot cross the blood-brain barrier (BBB), rendering them ineffective for detoxifying SM in the brain and highlighting the need for lipophilic scavengers.
View Article and Find Full Text PDFγ-Glutamyl transpeptidase (GGT) regulates glutathione (GSH), essential for cell functions and linked to cancer. High GGT levels in tumors make it a valuable cancer biomarker. Current GGT detection methods often lack sensitivity and specificity.
View Article and Find Full Text PDFBreast and colorectal cancers are the most common tumors, with high recurrence and low survival rates. We designed and synthesized a series of spirooxindole pyrrolidinyl derivatives, which were further evaluated for anti-proliferative activity using MDA-MB-468 and HCT 15 cell lines. The best inhibitor of this class, compound 6f, showed a very good inhibition potency, both on the MDA-MB-468 and HCT 15 cells as confirmed by molecular docking and molecular dynamic studies that predicted its binding mode into the active site of the targets.
View Article and Find Full Text PDFArsenic contamination poses a significant health risk, particularly when it infiltrates water supplies. While current detection methods offer precise analysis, they often involve complex instrumentation not suitable for field use. This study presents a novel approach by developing two probes, A1 and A2, based on 4-diethylaminosalicyladehyde, 2-hydroxy-1-naphthaldehyde, and 1,2-diaminoanthraquinone.
View Article and Find Full Text PDFβ-Galactosidase serves as a pivotal biomarker for both cancer and cellular aging. The advancement of fluorescent sensors for tracking β-galactosidase activity is imperative in the realm of cancer diagnosis. We have designed a near-infrared fluorescent probe (PTA-gal) for the detection of β-galactosidase in living systems with large Stokes shifts.
View Article and Find Full Text PDFAt this "Aluminum Age", exposure to aluminum (metallic or ionic form) is inevitable and inestimable. The presence of aluminum in biological systems is evident but more often aluminum toxicity is less understood. Therefore, the presence of biologically reactive aluminum needs to be identified and quantified.
View Article and Find Full Text PDFPhosgene, an exceptionally hazardous gas, poses a grave concern for the health and safety of the general public. The present study describes a fluorescent ratiometric probe for phosgene employing 2-(naphthalen-2-yl) benzo[d]oxazol-5-amine (NOA) with an amino group as the recognition site. NOA detects phosgene through the intramolecular charge transfer mechanism.
View Article and Find Full Text PDFThough iron is one of the vital micronutrients in biological systems excess of which is associated with various illness. Consumption of contaminated water and crops because of its extensive industrial utility is one of the major sources for excess iron in living beings. Hence, we have designed a sensor based on carbon nanoparticles for the detection of Fe (III) and we have also attempted to estimate Fe (III) in spiked water samples.
View Article and Find Full Text PDFRhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg, Al, Cr, Cu, Fe, Fe, Cd, Sn, Zn, and Pb, is one of their major advantages.
View Article and Find Full Text PDFBilirubin is an indispensable biomarker for liver diseases. Utilizing organic molecules as sensor platform for effective detection of bilirubin are little. In addition, the reported fluorophores required longer incubation time for detection.
View Article and Find Full Text PDFColorimetric and fluorescent probes have received a lot of attention for detecting lethal analytes in realistic systems and in living things. Herein, a dual-approachable Benzo-hemicyaninebased red-emitting fluorescent probe PBiSMe, for distinct and instantaneous detection of CN and HS was synthesized. The PBiSMe emitted red fluorescence (570 nm) can switch to turn-off (570 nm) and blue fluorescence (465 nm) in response to CN and HS, respectively.
View Article and Find Full Text PDFA highly stereoselective, three-component method has been developed to synthesize pyrrolidine and pyrrolizidine containing spirooxindole derivatives. The interaction between the dipolarophile α,β-unsaturated carbonyl compounds and the dipole azomethine ylide formed by the reaction of 1,2-dicarbonyl compounds and secondary amino acids is referred to as the 1,3-dipolar cycloaddition reaction. The reaction conditions were optimized to achieve excellent stereo- and regioselectivity.
View Article and Find Full Text PDFFluorescent bio-imaging will be the future in the medical diagnostic for visualising inner cellular and tissues. Near-infrared (NIR) emitting fluorescent probes serve dynamically for targeted fluorescent imaging of live cells and tissues. NIR imaging is advantageous because of its merits like deep tissue penetration, minimum damage to the tissue, reduced auto fluorescence from the background, and improved resolution in imaging.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2022
Hydrogen sulfide (HS), one of redox-active sulfur species, is known as a signaling molecule and an antioxidant in biological tissues to maintain cellular functions. The development of selective and sensitive HS detection is important to understand the role of HS in vivo. Herein, a new two-photon probe NNE was developed to detect hydrogen sulfide using 6-acetyl-N-methyl-2-naphthylamine with an attachment of 7-nitrobenzo-oxadiazole.
View Article and Find Full Text PDFDetection of chemical warfare agents (CWA) by simple and rapid methods with real-sample applications are quite inevitable in order to ease the threats to living systems caused by uncertain terror attacks and wars. Herein we have developed the first far-red to near infra-red (NIR) probe based on a covalent assembly approach for the detection of trace amounts of nerve agent mimic diethyl chloro phosphate (DCP) in soil and their fluorescent bio imaging in live cells. The probe features abrupt fluorescence turn on sensing of DCP with fluorescence quantum yield Φ = 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2022
Cysteine (Cys), an essential amino acid, plays several crucial functions in numerous biological processes. Notably, the detection of Cys is critical to disease diagnosis. Fluorescent probes that can quickly detect Cys will help to study the mechanism of certain diseases.
View Article and Find Full Text PDFStriking colorimetric probe (CynH) for abrupt detection of hydrazine under complete aqueous solution was achieved. The water soluble probe was designed with electron "push-pull" strategy by coupling of 4-hydroxy benzaldehyde and 2, 3, 3-trimethylindolinine. The positively charged N-propylated indolinine make the probe completely soluble in water.
View Article and Find Full Text PDFA set of 12 analogues of piperine was designed, replacing the amide functional group of the molecule with different aliphatic and aromatic ester functional groups. Molecular docking studies of these molecules with FDA-approved target proteins for anti-bacterial drugs were done. The binding energy of the proteins and the ligands were low and the analogues were found to be drug-like based on the ADME results; hence, the molecules were synthesized.
View Article and Find Full Text PDFThe thiosemicarbazide based receptor was synthesized with 4-(diethylamino)salicylaldehyde and N- phenyl-thiosemicarbazide by the simple condensation method and the properties were studied under the naked eye, UV-Vis and fluorescence studies etc. The synthesized receptor detects cyanide, cobalt, and mercury in acetonitrile medium. The observed color changes included colourless to yellow for cyanide, colourless to green for cobalt and colourless to yellow for mercury which were seen under naked eye without the aid of any instruments.
View Article and Find Full Text PDFThe homeostasis of short-lived reactive species such as hydrogen sulfide/hypochlorous acid (HS/HOCl) in biological systems is essential for maintaining intercellular balance. An unchecked increase in biological HS concentrations impedes homeostasis. In this report, we present a molecular probe pyrene-based sulfonyl hydrazone derived from pyrene for the selective detection of HS endogenously as well as exogenously through a "turn-off" response in water.
View Article and Find Full Text PDFAchieving selective detection of target analytes in aqueous media continues to be an arduous proposition. Herein, we report the conceptualization and synthesis of a novel tailor-fit molecular probe R based on 1,8-naphthalimide which acts as a trifunctional molecular sensor for CN, Fe and HS. R shows colorimetric and fluorometric "on-off" relay recognition for CN (red colour and orange emission) and Fe (no colour and no emission) in 5% HO + DMSO medium which is experimentally ascertained to be a tandem deprotonation-protonation process and is supported by H-NMR titration.
View Article and Find Full Text PDFUsing a simple solution based synthesis route, hexagonal MoO₃ (h-MoO₃) nanorods on reduced graphene oxide (RGO) sheets were prepared. The structure and morphology of resulting RGO-MoO₃ nanocomposite were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The optical property was studied using UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL).
View Article and Find Full Text PDF