Turning the π-structure and electronic properties of carbon nanotubes (CNTs) is a cutting-edge research topic in interdisciplinary areas of material chemistry. In general, chemical functionalization of CNT has been adopted for this purpose, which has resulted in a few monolayer thickness increment of CNT diameter size. Herein, we report an interesting observation of >10-fold increment in the apparent diameter of multiwalled carbon nanotubes (MWCNTs) brought about by a process of self-assembly of the BZ moiety on MWCNT, which is formed by electrochemical oxidation of a surface-adsorbed benzene-water cluster, {BZ-HO}.
View Article and Find Full Text PDFDirect sensing of uric acid (UA) in an undiluted whole blood sample is reported here taking human whole blood as an analyte and a self-supporting electrolyte. Among various solid electrodes (Pt, Au, GCE, and GCE/Nafion) and carbon nanomaterials (carbon nanofibers, graphene oxide, graphite nanopowder, graphitized mesoporous carbon (GMC), single-walled carbon nanotubes, and multiwalled carbon nanotubes) tested, a GMC-modified glassy carbon electrode, designated as GCE/GMC, showed a remarkable response towards direct electrochemical oxidation of blood uric acid at ∼0.25 V vs.
View Article and Find Full Text PDF