HIV/AIDS continues to pose an enormous burden on global health. Current HIV therapeutics include inhibitors that target the enzymes HIV protease, reverse transcriptase, and integrase, along with viral entry inhibitors that block the initial steps of HIV infection by preventing membrane fusion or virus-coreceptor interactions. With regard to the latter, peptides derived from the HIV coreceptor CCR5 were previously shown to modestly inhibit entry of CCR5-tropic HIV strains, with a peptide containing residues 178-191 of the second extracellular loop (peptide 2C) showing the strongest inhibition.
View Article and Find Full Text PDFThe permeation of antibiotics through bacterial membranes to their target site is a crucial determinant of drug activity but in many cases remains poorly understood. During screening efforts to discover new broad-spectrum antibiotic compounds from marine sponge samples, we identified a new analog of the peptidyl nucleoside antibiotic blasticidin S that exhibited up to 16-fold-improved potency against a range of laboratory and clinical bacterial strains which we named P10. Whole-genome sequencing of laboratory-evolved strains of resistant to blasticidin S and P10, combined with genome-wide assessment of the fitness of barcoded knockout strains in the presence of the antibiotics, revealed that restriction of cellular access was a key feature in the development of resistance to this class of drug.
View Article and Find Full Text PDFIn the absence of a cure or vaccine for HIV/AIDS, small molecule inhibitors remain an attractive choice for antiviral therapeutics. Recent structural and functional studies of the HIV-1 surface envelope glycoprotein gp120 have revealed sites of vulnerability that can be targeted by small molecule and peptide inhibitors, thereby inhibiting HIV-1 infection. Here we describe a series of small molecule entry inhibitors that were designed to mimic the sulfated N-terminal peptide of the HIV-1 coreceptor CCR5.
View Article and Find Full Text PDFJ Med Chem
April 2015
Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics.
View Article and Find Full Text PDFThe design, synthesis, and evaluation of a series of dipeptidyl α-hydroxyphosphonates is reported. The synthesized compounds displayed high anti-norovirus activity in a cell-based replicon system, as well as high enzyme selectivity.
View Article and Find Full Text PDFThe design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.
View Article and Find Full Text PDFFeline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease.
View Article and Find Full Text PDFNoroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system.
View Article and Find Full Text PDFPhylogenetic analysis has demonstrated that some positive-sense RNA viruses can be classified into the picornavirus-like supercluster, which includes picornaviruses, caliciviruses, and coronaviruses. These viruses possess 3C or 3C-like proteases (3Cpro or 3CLpro, respectively), which contain a typical chymotrypsin-like fold and a catalytic triad (or dyad) with a Cys residue as a nucleophile. The conserved key sites of 3Cpro or 3CLpro may serve as attractive targets for the design of broad-spectrum antivirals for multiple viruses in the supercluster.
View Article and Find Full Text PDFA series of structurally-diverse α-ketoamides and α-ketoheterocycles was synthesized and subsequently investigated for inhibitory activity against norovirus 3CL protease in vitro, as well as anti-norovirus activity in a cell-based replicon system. The synthesized compounds were found to inhibit norovirus 3CL protease in vitro and to also exhibit potent anti-norovirus activity in a cell-based replicon system.
View Article and Find Full Text PDFThe development of small molecule therapeutics to combat norovirus infection is of considerable interest from a public health perspective because of the highly contagious nature of noroviruses. A series of amino acid-derived acyclic sulfamide-based norovirus inhibitors has been synthesized and evaluated using a cell-based replicon system. Several compounds were found to display potent anti-norovirus activity, low toxicity, and good aqueous solubility.
View Article and Find Full Text PDFThere is currently an unmet need for the development of small-molecule therapeutics for norovirus infection. The piperazine scaffold, a privileged structure embodied in many pharmacological agents, was used to synthesize an array of structurally-diverse derivatives which were screened for anti-norovius activity in a cell-based replicon system. The studies described herein demonstrate for the first time that functionalized piperazine derivatives possess anti-norovirus activity.
View Article and Find Full Text PDFAn optimization campaign focused on improving pharmacological activity and physicochemical properties of a recently-identified class of cyclosulfamide-based norovirus inhibitors has been carried out. Dimeric compound 4 was found to be a ∼10-fold more potent norovirus inhibitor (ED(50) 0.4 μM) compared to the original hit, however, isonipecotic acid ester derivatives 7e and 10a were shown to have superior therapeutic indices.
View Article and Find Full Text PDFA new class of compounds that exhibit anti-norovirus activity in a cell-based system and embody in their structure a cyclosulfamide scaffold has been identified. The structure of the initial hit (compound 2a, ED(50) 4 μM, TD(50) 50 μM) has been prospected by exploiting multiple points of diversity and generating appropriate structure-activity relationships.
View Article and Find Full Text PDFA series of broad-spectrum antifungal agents based on the 1,2-benzisothiazol-3(2H)-one scaffold is reported. Preliminary structure-activity relationship studies have established the importance of the presence of the heterocyclic ring, a methyl group, and a phenyl ring for optimal manifestation of antifungal activity.
View Article and Find Full Text PDFA scaffold hopping strategy was employed to identify new chemotypes that inhibit noroviruses. The replacement of the cyclosulfamide scaffold by an array of heterocyclic scaffolds lead to the identification of additional series of compounds that possessed anti-norovirus activity in a cell-based replicon system.
View Article and Find Full Text PDFThe first series of peptidyl aldehyde inhibitors that incorporate in their structure a glutamine surrogate has been designed and synthesized based on the known substrate specificity of Norwalk virus 3C protease. The inhibitory activity of the compounds with the protease and with a norovirus cell-based replicon system was investigated. Members of this class of compounds exhibited noteworthy activity both in vitro and in a cell-based replicon system.
View Article and Find Full Text PDF