miR-214 has been recently found to be significantly downregulated in calcified human aortic valves (AVs). ER stress, especially the ATF4-mediated pathway, has also been shown to be significantly upregulated in calcific AV disease. Since elevated cyclic stretch is one of the major mechanical stimuli for AV calcification and ATF4 is a validated target of miR-214, we investigated the effect of cyclic stretch on miR-214 expression as well as those of ATF4 and two downstream genes (CHOP and BCL2L1).
View Article and Find Full Text PDFAortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis.
View Article and Find Full Text PDFJACC Cardiovasc Interv
December 2015
Objectives: The aim of this study was to investigate the hemodynamic performance of a transcatheter heart valve (THV) deployed at different valve-in-valve positions in an in vitro model using a small surgical bioprosthesis.
Background: Patients at high surgical risk with failing 19-mm surgical aortic bioprostheses are not candidates for valve-in-valve transcatheter aortic valve replacement, because of risk for high transvalvular pressure gradients (TVPGs) and patient-prosthesis mismatch.
Methods: A 19-mm stented aortic bioprosthesis was mounted into the aortic chamber of a pulse duplicator, and a 23-mm low-profile balloon-expandable THV was deployed (valve-in-valve) in 4 positions: normal (bottom of the THV stent aligned with the bottom of the surgical bioprosthesis sewing ring) and 3, 6, and 8 mm above the normal position.
Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system.
View Article and Find Full Text PDFThe hinge regions of the bileaflet mechanical heart valve (BMHV) can cause blood element damage due to nonphysiological shear stress levels and regions of flow stasis. Recently, a micro particle image velocimetry (μPIV) system was developed to study whole flow fields within BMHV hinge regions with enhanced spatial resolution under steady leakage flow conditions. However, global velocity maps under pulsatile conditions are still necessary to fully understand the blood damage potential of these valves.
View Article and Find Full Text PDFThe aortic valve (AV) experiences a complex mechanical environment, which includes tension, flexure, pressure, and shear stress forces due to blood flow during each cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have shown that pathological states such as hypertension and congenital defect like bicuspid AV (BAV) can potentially alter the AV's mechanical environment, triggering a cascade of remodeling, inflammation, and calcification activities in AV tissue.
View Article and Find Full Text PDFAortic valve interstitial cells (VIC) can exhibit phenotypic characteristics of fibroblasts, myofibroblasts, and smooth muscle cells. Others have proposed that valve cells become activated and exhibit myofibroblast or fibroblast characteristics during disease initiation and progression; however, the cues that modulate this phenotypic change remain unclear. We hypothesize that the mechanical forces experienced by the valve play a role in regulating the native phenotype of the valve and that altered mechanical forces result in an activated phenotype.
View Article and Find Full Text PDF