Inefficient homology-directed repair (HDR) constrains CRISPR-Cas9 genome editing in organisms that preferentially employ nonhomologous end joining (NHEJ) to fix DNA double-strand breaks (DSBs). Current strategies used to alleviate NHEJ proficiency involve NHEJ disruption. To confer precision editing without NHEJ disruption, we identified the shortcomings of the conventional CRISPR platforms and developed a CRISPR platform-lowered indel nuclease system enabling accurate repair (LINEAR)-which enhanced HDR rates (to 67-100%) compared to those in previous reports using conventional platforms in four NHEJ-proficient yeasts.
View Article and Find Full Text PDFChromatin and gene regulatory molecules tend to operate in multisubunit complexes in the process of controlling gene expression. Accumulating evidence suggests that varying the amount of any one member of such complexes will affect the function of the whole via the kinetics of assembly and other actions. In effect, they exhibit a "balance" among themselves in terms of the activity of the whole.
View Article and Find Full Text PDF