Publications by authors named "Siuzdak K"

Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.

View Article and Find Full Text PDF
Article Synopsis
  • Biomarkers are essential for detecting diseases like cancer early on, with CD5 being a key protein linked to immune regulation and various diseases.
  • A new electrochemical immunosensor using advanced Ti/Au electrodes allows for ultra-sensitive detection of CD5 in blood serum, surpassing current methods.
  • This sensor demonstrates impressive sensitivity, with detection limits far better than traditional ELISA kits, showing promise for enhancing early cancer diagnosis and other medical uses.
View Article and Find Full Text PDF

Differences between photoelectrochemical and electrochemical activity were thoroughly investigated for the oxygen evolution reaction mediated by AgS deposited on two types of ordered titania substrates. Titanium dioxide nanotubes were fabricated by anodization of magnetron sputtered Ti films on ITO-coated glass substrates or directly from Ti foil. Further, AgS deposition on the nanotubes was carried out using successive ionic layer adsorption and reaction, known as SILAR, with 5, 25, and 45 cycles performed.

View Article and Find Full Text PDF

In this study, TiCT underwent laser treatment to reshape it, resulting in the formation of a TiO/TiCT heterojunction. The interaction with laser light induced the formation of spherical TiO composed of an anatase-rutile phase on the TiCT surface. Such a heterostructure was loaded over a titania nanotube (TNT) layer, and the surface area was enhanced through immersion in a TiCl solution followed by thermal treatment.

View Article and Find Full Text PDF

Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements.

View Article and Find Full Text PDF

In this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au-Ti surface have preferential and stronger binding patterns through the carboxyl bond inducing an enhanced surface coverage with CD147. Control of bonding at the surface is essential for oriented receptor assembling and boosted sensitivity.

View Article and Find Full Text PDF

This work presents pulsed UV laser treatment (355 nm, 2 Hz) of TiO nanotubes decorated with chromium oxides. The modification was performed in a system equipped with a beam homogenizer, and during the irradiation, the samples were mounted onto the moving motorized table. In such a system, both precisely selected areas and any large area of the sample can be modified.

View Article and Find Full Text PDF

Over the last few decades, titanium(IV) oxide-based materials have gained particular attention due to their stability, corrosion resistance, photocatalytic activity under UV light, and possibilities for modification. Among various structures, TiO nanotubes (NTs) grown on Ti foil or glass substrates and obtained through a simple anodization process are widely used as photocatalysts or photoanodes. During the anodization process, the geometry of the nanotubes (length, distribution, diameter, wall thickness, etc.

View Article and Find Full Text PDF

To provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter on such a modified surface. To ensure a controlled release of the bactericidal substance, the samples were additionally coated with a pH-sensitive chitosan/Eudragit 100 coating, also exhibiting bactericidal properties.

View Article and Find Full Text PDF

The importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls (BCNWs) with an electropolymerized polydopamine/polyzwitterion (PDA|PZ) coating revealing tunable mechanical and electrochemical properties.

View Article and Find Full Text PDF

Photoanodes consisting of titania nanotubes (TNTs) grown on transparent conductive oxides (TCO) by anodic oxidation are being widely investigated as a low-cost alternative to silicon-based materials, e.g., in solar light-harvesting applications.

View Article and Find Full Text PDF

Although hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste which is a huge challenge.

View Article and Find Full Text PDF

In this article, we studied the annealing process of AuCu layers deposited on TiO nanotubes (NTs) conducted in various atmospheres such as air, vacuum, argon, and hydrogen in order to obtain materials active in both visible and UV-vis ranges. The material fabrication route covers the electrochemical anodization of a Ti plate, followed by thin AuCu film magnetron sputtering and further thermal treatment. Scanning electron microscopy images confirmed the presence of spherical nanoparticles (NPs) formed on the external and internal walls of NTs.

View Article and Find Full Text PDF

This work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine.

View Article and Find Full Text PDF

More than 50 years have passed since Clark and Lyon developed the concept of glucose biosensors. Extensive research about biosensors has been carried out up to this day, and an exponential trend in this topic can be observed. The scope of this review is to present various enzyme immobilization methods on gold nanoparticles used for glucose sensing over the past five years.

View Article and Find Full Text PDF

Here, we report significant activity towards the oxygen evolution reaction (OER) of spherical nickel nanoparticles (NPs) electrodeposited onto free-standing TiO nanotubes (TNT) cyclic voltammetry. It has been shown that simple manipulation of processing parameters, including scan rate and number of cycles, allows for formation of the NPs in various diameters and amounts. The polarization data with respect to transmission electron microscopy (TEM) allowed for determination of the diameter and propagation depth of the Ni NPs leading to the highest activity towards the OER with an overpotential of 540 mV at +10 mA cm and Tafel slope of 52 mV per decade.

View Article and Find Full Text PDF

Herein, we combine titania layers with gold species in a laser-supported process and report a substantial change of properties of the resulting heterostructures depending on the major processing parameters. Electrodes were fabricated via an anodisation process complemented with calcination to ensure a crystalline phase, and followed by magnetron sputtering of metallic films. The obtained TiO nanotubes with deposited thin (5, 10 nm) Au films were treated with a UV laser (355 nm) to form Au nanoparticles on top of the nanotubes.

View Article and Find Full Text PDF

In the following article, we present a simple, two-step method of creating spaced, hollow nanopillars, from the titania nanotube arrays via pulsed laser-treatment. Due to the high ordering of the structure, the prepared material exhibits photonic properties, which has been shown to increase the overall photoefficiency. The optical and morphological changes in the titania nanotubes after pulsed laser-treatment with 532, 355, and 266 nm wavelengths in the 10-50 mJ/cm fluence range are studied.

View Article and Find Full Text PDF

Nowadays, more than ever, environmental awareness is being taken into account when it comes to the design of novel materials. Herein, the pathway to the creation of a colloid of spherical, almost purely metallic nickel nanoparticles (NPs) through pulsed laser ablation in ethanol is presented. A complex description of the colloid is provided through UV-vis spectroscopy and dynamic light scattering analysis, ensuring insight into laser-induced nanoparticle homogenization and size-control of the NPs.

View Article and Find Full Text PDF

Fossil fuels became increasingly unpleasant energy source due to their negative impact on the environment; thus, attractiveness of renewable, and especially solar energy, is growing worldwide. Among others, the research is focused on smart combination of simple compounds towards formation of the photoactive materials. Following that, our work concerns the optimized manipulation of laser light coupled with the iron sputtering to transform titania that is mostly UV-active, as well as exhibiting poor oxygen evolution reaction to the material responding to solar light, and that can be further used in water splitting process.

View Article and Find Full Text PDF

We focus here on a novel approach to analysing the mechanisms of interference phenomena in glucose sensing, taking into account the changes within the Nafion layer deposited on the active surface. Several electrochemical techniques were used to verify the sustainability of catalytic properties of the electrode material after exposure to different compounds, i.e.

View Article and Find Full Text PDF

Conversion coatings are one of the primary types of galvanic coatings used to protect steel structures against corrosion. They are created through chemical reactions between the metal surface and the environment of the phosphating. This paper investigates the impact that the addition of new metal cations to the phosphating reaction environment has on the quality of the final coating.

View Article and Find Full Text PDF

The laser processing of the titania nanotubes has been investigated in terms of morphology, structure, and optical properties of the obtained material. The length of the nanotubes and crystallinity, as well as the atmosphere of the laser treatment, were taken into account. The degree of changes of the initial geometry of nanotubes were checked by means of scanning electron microscopy, which visualizes both the surface and the cross-section.

View Article and Find Full Text PDF

Titanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or low-cost manufacturing method. This work presents scalable pulsed laser modification of TiO nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning electron microscopy along with Raman and UV-vis spectra of laser-treated samples in a good agreement indicate the presence of additional laser-induced shallow states within band gap via degradation of crystalline structure.

View Article and Find Full Text PDF