A new class of luminescent cyclometalated iridium(III) polypyridine fluorous complexes has been designed; the fluorous pendant not only plays an important role in the photophysical and biological properties of the complexes, but also allows the facile isolation of biomolecules labeled with these complexes with fluorous solid-phase extraction (FSPE).
View Article and Find Full Text PDFA new class of luminescent biotinylation reagents derived from cyclometalated iridium(III) and rhodium(III) bis(pyridylbenzaldehyde) biotin complexes, [Ir(pba)(2)(bpy-C6-biotin)](PF(6)) (1), [Ir(pba)(2)(bpy-TEG-biotin)](PF(6)) (2), and [Rh(pba)(2)(bpy-C6-biotin)](PF(6)) (3), together with their biotin-free counterparts [Ir(pba)(2)(bpy-Et)](PF(6)) (4) and [Rh(pba)(2)(bpy-Et)](PF(6)) (5) [Hpba = 4-(2-pyridyl)benzaldehyde, bpy-C6-biotin = 4-[(6-biotinamido)hexylaminocarbonyl]-4'-methyl-2,2'-bipyridine, bpy-TEG-biotin = 4-[(13-biotinamido-4,7,10-trioxa)tridecylaminocarbonyl]-4'-methyl-2,2'-bipyridine, bpy-Et = 4-(ethylaminocarbonyl)-4'-methyl-2,2'-bipyridine], have been synthesized and characterized and their photophysical and electrochemical properties studied. Upon photoexcitation, the iridium(III) complexes 1, 2, and 4 exhibited intense and long-lived orange-yellow luminescence in fluid solutions at 298 K and in rigid glass at 77 K. The rhodium(III) complexes 3 and 5 were weakly emissive in fluid solutions at 298 K but showed intense luminescence in low-temperature glass.
View Article and Find Full Text PDF