Pulmonary fibrosis is a chronic interstitial lung disease characterized by irreversible, progressive lung scarring and eventual respiratory failure. Fibroblast activation plays a crucial role in the progression of pulmonary fibrosis. Transforming growth factor-β (TGF-β) signaling contributes to pulmonary fibrosis by regulating lung fibroblast activation.
View Article and Find Full Text PDFThe underlying mechanism of myostatin (MSTN) gene mutation impact on porcine carcass and meat quality has not yet been fully understood. The meat quality trait testing of the second filial generation wild-type (WT) and homozygous MSTN mutant (MSTN) castrated male finishing pigs, and RNA-seq and metabolomics on the longissimus thoracis (LT) and subcutaneous adipose tissues (SAT) were performed. Compared with WT pigs, MSTN pigs had higher carcass lean percentage and lower backfat thickness (all P < 0.
View Article and Find Full Text PDFCnidarians are the most primitive metazoans, but their evolutionary relationships are poorly understood, although recent studies present several phylogenetic hypotheses. Here, we collected 266 complete cnidarian mitochondrial genomes and re-evaluated the phylogenetic relationships between the major lineages. We described the gene rearrangement patterns of Cnidaria.
View Article and Find Full Text PDFMyostatin (MSTN) is a growth and differentiation factor that regulates proliferation and differentiation of myoblasts, which in turn controls skeletal muscle growth. It may regulate myoblast differentiation by influencing miRNA expression, and the present study aimed to clarify its precise mechanism of action. Here, we found that pigs showed an overgrowth of skeletal muscle and upregulated miR-455-3p level.
View Article and Find Full Text PDFMyostatin (MSTN), a negative regulator of skeletal muscle mass, is not well known in extraocular muscles (EOMs). EOMs are specialized skeletal muscles. Hence, in this study, the effect of MSTN on the superior rectus (SR) and superior oblique (SO) of 2-month-old MSTN knockout (MSTN) and wild-type (WT) pigs of the same genotype was investigated.
View Article and Find Full Text PDFMyostatin (MSTN) is a member of the transforming growth factor-β superfamily that inhibits skeletal muscle growth and development. The esophagus is composed of skeletal muscle and smooth muscle, but the effect of MSTN on esophagus striated muscle (ESM) is unknown. The present study investigated the role of MSTN in ESM using MSTN mutant pigs through histological, gene and protein expression analysis in ESM of MSTN knockout (MSTN) pigs and their wild type (WT) littermates.
View Article and Find Full Text PDFLoss of muscle mass can lead to diseases such as sarcopenia, diabetes, and obesity, which can worsen the quality of life and increase the incidence of disease. Therefore, understanding the mechanism underlying skeletal muscle differentiation is vital to prevent muscle diseases. We previously found that microRNA-320 (miR-320) is highly expressed in the lean muscle-type pigs, but its regulatory role in myogenesis remains unclear.
View Article and Find Full Text PDFGentimilegenins A, B (1, 2), (6R, 8R)-6-hydroxy swerimuslactone A (3), (6R, 8S)-6-hydroxy swerimuslactone A (4), 4-hydroxy roburic acid methyl ester (5), (±) 3'-hydroxy gentioxepine (6), N-heptacosanoyl anthranilic acid (7a), N-nonacosanoyl anthranilic acid (7b), together with 40 known compounds were isolated from the roots of Gentiana macrophylla Pall. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, IR, 1D-, 2D-NMR and X-ray diffraction. The anti-inflammatory effects of selected compounds were also evaluated through the detection of their inhibitory effects on NO production in LPS-induced RAW264.
View Article and Find Full Text PDFPhenoloxidase, a critical enzyme in insects, may serve as a promising target in botanical insecticide development. In an effort to identify active ingredients with insecticidal properties in green walnut husks, juglone and plumbagin were isolated from the chloroform extract using phenoloxidase as bioactive target with the IC of 0.247 g/L and 0.
View Article and Find Full Text PDF