Photocatalytic technology offers powerful virus disinfection in wastewater via oxidative capability with minimum harmful by-products generation. This review paper aims to provide state-of-the-art photocatalytic technology in battling transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. Prior to that, the advantages and limitations of the existing conventional and advanced oxidation processes for virus disinfection in water systems were thoroughly examined.
View Article and Find Full Text PDFArsenite [As(iii)] and arsenate [As(v)] removal by direct contact membrane distillation (DCMD) using novel hydrophobic green, silica-based ceramic hollow fibre membranes derived from agricultural rice husk was investigated in this work. The green ceramic hollow fibre membranes were prepared from amorphous (ASHFM) and crystalline (CSHFM) silica-based rice husk ash and modified to be hydrophobic immersion fluoroalkylsilane (FAS) grafting of 1,1,2,2-perfluorodecyltriethoxysilane. Superhydrophobic contact angle values up to 157° and 161° were obtained for ASHFM and CSHFM, respectively.
View Article and Find Full Text PDFInspired by the lotus leaf surface structure, which possesses a hydrophobicity behaviour, a low cost, high performance superhydrophobic and superoleophilic kaolin hollow fibre membrane (KHFM) was obtained by a simple sol-gel grafted method using tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) for oil removal from water. The KHFM was grafted at various grafting times ranging from 1 to 5 coating cycles. Prior to the calcination process at 400 °C, the grafted KHFM was dried in an oven at 100 °C for 1 hour for each grafting coating cycle.
View Article and Find Full Text PDF