Publications by authors named "Siti Kartom Kamarudin"

Hierarchical designing of (10 wt% - 70 wt%) nickel over HZSM-5 zeolite was done using wet-impregnation method. The material formation was established by XRD, BET, TPD and TEM studies. Optimization of reaction parameters for mixture of LDPE derived oil and waste cooking oil was found to be 450 °C, 4.

View Article and Find Full Text PDF

Direct Methanol Fuel Cell (DMFC) is a powerful system for generating electrical energy for various applications. However, there are several limitations that hinder the commercialization of DMFCs, such as the expense of platinum (Pt) at market price, sluggish methanol oxidation reaction (MOR) due to carbon monoxide (CO) formation, and slow electrooxidation kinetics. This work introduces carbon nanocages (CNCs) that were obtained through the pyrolysis of polypyrrole (Ppy) as the carbon source.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focuses on creating a Sodium Alginate/Poly (Vinyl Alcohol) (SA/PVA) blended membrane enhanced with montmorillonite (MMT) as an inorganic filler, optimizing MMT concentration at 10 wt% for best performance.
  • * The SA/PVA-MMT membrane shows promising results with high proton conductivity and low methanol uptake, attributed to MMT's ability to improve water absorption and proton transport, indicating its potential as a cost-effective alternative membrane.
View Article and Find Full Text PDF

Membrane-less fuel cells are a promising power source for portable applications that enable the solving of membrane-related issues, such as water management and high cost, in conventional fuel cells. Apparently, research on this system uses a single electrolyte. This study focused on enhancing the performance of membrane-less fuel cells by introducing multiple reactants that are dual electrolytes with hydrogen peroxide (HO) and oxygen as oxidants in membrane-less direct methanol fuel cells (DMFC).

View Article and Find Full Text PDF

Fuel cells have already demonstrated their potential for green energy generation. However, the low reaction performance becomes an obstacle in terms of large-scale commercial manufacturing. Accordingly, this work focuses on a new unique fabrication of three-dimensional pore hierarchy TiO-graphene aerogel (TiO-GA) supporting PtRu catalyst for anodic catalyst direct methanol fuel cell, which is facile, ecologically benign, and economical.

View Article and Find Full Text PDF

Tissue engineering (TE) is an emerging field of study that incorporates the principles of biology, medicine, and engineering for designing biological substitutes to maintain, restore, or improve tissue functions with the goal of avoiding organ transplantation. Amongst the various scaffolding techniques, electrospinning is one of the most widely used techniques to synthesise a nanofibrous scaffold. Electrospinning as a potential tissue engineering scaffolding technique has attracted a great deal of interest and has been widely discussed in many studies.

View Article and Find Full Text PDF

This study determined the most effective microbes acting as ammonia-oxidising (AOB) and manganese-oxidising bacteria (MnOB) for the simultaneous removal of ammonia (NH(4)(+)-N) and manganese (Mn(2+)) from water. Two conditions of mixed culture of bacteria: an acclimatised mixed culture (mixed culture: MC) in a 5-L bioreactor and biofilm attached on a plastic medium (stages of mixed culture: SMC) in a biological aerated filter were isolated and identified using Biolog MicroSystem and 16S rRNA sequencing. A screening test for determining the most effective microbe in the removal of NH(4)(+)-N and Mn(2+) was initially performed using SMC and MC, respectively, and found that Bacillus cereus was the most effective microbe for the removal of NH(4)(+)-N and Mn(2+).

View Article and Find Full Text PDF

Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments.

View Article and Find Full Text PDF