Traditionally recognised as the energy reservoir and main site of adaptive thermogenesis, white and brown adipose tissues are complex endocrine organs regulating systemic energy metabolism via the secretion of bioactive molecules, termed "adipokines" and "batokines", respectively. Due to its significant role in regulating whole-body energy metabolism and other physiological processes, adipose tissue has been increasingly explored as a feasible therapeutic target for obesity. Flavonoids are one of the most significant plant polyphenolic compounds holding a great potential as therapeutic agents for combating obesity.
View Article and Find Full Text PDFAflatoxin B (AFB) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes.
View Article and Find Full Text PDFBackground: Neuregulin 4 (Nrg4) is a brown adipose tissue-derived adipokine that greatly affects systemic metabolism and improves metabolic derangements. Although abnormal circulating levels of Nrg4 are common in obesity, it remains elusive whether low or elevated levels of this batokine are associated with the onset of metabolic diseases.
Aim: To assess Nrg4 levels and its role as a feasible biomarker to predict the severity of obesity, gestational diabetes mellitus (GDM), type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD).
Contemp Clin Trials Commun
August 2024
Metabolic syndrome has emerged as a significant global public health concern, necessitating comprehensive examination alongside cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2D). This study provides a comprehensive analysis of clinical trials, drawing upon data sourced from the International Clinical Trials Registry Platform (ICTRP), until April 2023. Information pertaining to trial attributes and intervention features was gathered and subsequently summarized.
View Article and Find Full Text PDFNatural compounds such as curcumin, a polyphenolic compound derived from the rhizome of turmeric, have gathered remarkable scientific interest due to their diverse metabolic benefits including anti-obesity potential. However, curcumin faces challenges stemming from its unfavorable pharmacokinetic profile. To address this issue, synthetic curcumin derivatives aimed at enhancing the biological efficacy of curcumin have previously been developed.
View Article and Find Full Text PDFLipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells.
View Article and Find Full Text PDFHigh-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents.
View Article and Find Full Text PDFThe discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile.
View Article and Find Full Text PDFTrop Anim Health Prod
September 2023
The rapidly growing world human population accentuates the need for improved production especially of protein-rich food. Broiler meat production offers opportunity to ensure security of this food. However, the production of modern broilers is not only limited by high feed costs due to dietary use of expensive energy and protein sources but also their meat possesses undesirable quality attributes.
View Article and Find Full Text PDFSarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D.
View Article and Find Full Text PDFMolecules
September 2023
The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper ( L.
View Article and Find Full Text PDFMolecules
September 2023
Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited.
View Article and Find Full Text PDFObesity is a major cause of morbidity and mortality globally, increasing the risk for chronic diseases. Thus, the need to identify more effective anti-obesity agents has spurred significant interest in the health-promoting properties of natural compounds. Of these, curcumin, the most abundant and bioactive constituent of turmeric, possesses a variety of health benefits including anti-obesity effects.
View Article and Find Full Text PDFAflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes.
View Article and Find Full Text PDFInsulin resistance and pancreatic β-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define β-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1β are consistently associated with β-cell failure in preclinical models and in people with T2D.
View Article and Find Full Text PDFBrown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) continue to be the leading cause of death in people with diabetes mellitus. Severely suppressed intracellular antioxidant defenses, including low plasma glutathione (GSH) levels, are consistently linked with the pathological features of diabetes such as oxidative stress and inflammation. In fact, it has already been established that low plasma GSH levels are associated with increased risk of CVD in people with diabetes.
View Article and Find Full Text PDFBrown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to promote energy expenditure and ameliorate diverse metabolic complications. There is a general interest in understanding the pleiotropic effects of metformin against metabolic complications. Major electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of metformin on regulating BAT thermogenic activity to ameliorate complications linked with obesity.
View Article and Find Full Text PDFUnlike the white adipose tissue (WAT) which mainly stores excess energy as fat, brown adipose tissue (BAT) has become physiologically important and therapeutically relevant for its prominent role in regulating energy metabolism. The current study makes use of an established animal model of type 2 diabetes (T2D) db/db mice to determine the effect of the disease progression on adipose tissue morphology and gene regulatory signatures. Results showed that WAT and BAT from db/db mice display a hypertrophied phenotype that is consistent with increased expression of the pro-inflammatory cytokine, tumor necrosis factor-alpha (Tnf-α).
View Article and Find Full Text PDFFront Nutr
October 2022
Background: Vitamin C is one of the most consumed dietary compounds and contains abundant antioxidant properties that could be essential in improving metabolic function. Thus, the current systematic review analyzed evidence on the beneficial effects of vitamin C intake on cardiovascular disease (CVD)-related outcomes in patients with diabetes or metabolic syndrome.
Methods: To identify relevant randomized control trials (RCTs), a systematic search was run using prominent search engines like PubMed and Google Scholar, from beginning up to March 2022.
Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress.
View Article and Find Full Text PDFDiabetic neuropathy is a risk factor for developing complications such as autonomic cardiovascular disease, osteoarthropathy, foot ulcers, and infections, which may be the direct cause of death. Even worse, patients plagued by this condition display painful neuropathic symptoms that are usually severe and frequently lead to depression, anxiety, and sleep disarrays, eventually leading to a poor quality of life. There is a general interest in evaluating the therapeutic properties of topical capsaicin cream as an effective agent for pain relief in these patients.
View Article and Find Full Text PDFDyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D.
View Article and Find Full Text PDF