Background: Mucolipidosis IV (MLIV) is an autosomal recessive pediatric disease that leads to motor and cognitive deficits and loss of vision. It is caused by a loss of function of the lysosomal channel transient receptor potential mucolipin-1 and is associated with an early pro-inflammatory brain phenotype, including increased cytokine expression. The goal of the current study was to determine whether blood cytokines are linked to motor dysfunction in patients with MLIV and reflect brain inflammatory changes observed in an MLIV mouse model.
View Article and Find Full Text PDFBackground: Diabetes is a risk factor for developing Alzheimer's disease (AD); however, the mechanism by which diabetes can promote AD pathology remains unknown. Diabetes results in diverse molecular changes in the brain, including dysregulation of glucose metabolism and loss of cerebrovascular homeostasis. Although these changes have been associated with increased Aβ pathology and increased expression of glial activation markers in APPswe/PS1dE9 (APP/PS1) mice, there has been limited characterization, to date, of the neuroinflammatory changes associated with diabetic conditions.
View Article and Find Full Text PDFPrevious work has shown that non-invasive optical measurement of low cerebral blood flow (CBF) is an acute biomarker of poor long-term cognitive outcome after repetitive mild traumatic brain injury (rmTBI). Herein, we explore the relationship between acute cerebral blood flow and underlying neuroinflammation. Specifically, because neuroinflammation is a driver of secondary injury after TBI, we hypothesized that both glial activation and inflammatory signaling are associated with acute CBF and, by extension, with long-term cognitive outcome after rmTBI.
View Article and Find Full Text PDFGlial immune activity is a key feature of Alzheimer's disease (AD). Given that the blood factors heme and hemoglobin (Hb) are both elevated in AD tissues and have immunomodulatory roles, here we sought to interrogate their roles in modulating β-amyloid (Aβ)-mediated inflammatory activation of astrocytes. We discovered that heme and Hb suppress immune activity of primary mouse astrocytes by reducing expression of several proinflammatory cytokines ( RANTES (regulated on activation normal T cell expressed and secreted)) and the scavenger receptor CD36 and reducing internalization of Aβ(1-42) by astrocytes.
View Article and Find Full Text PDFMucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1.
View Article and Find Full Text PDFBone marrow derived mesenchymal stem cells (MSCs) are regularly utilized for translational therapeutic strategies including cell therapy, tissue engineering, and regenerative medicine and are frequently used in preclinical mouse models for both mechanistic studies and screening of new cell based therapies. Current methods to culture murine MSCs (mMSCs) select for rapidly dividing colonies and require long-term expansion. These methods thus require months of culture to generate sufficient cell numbers for feasibility studies in a lab setting and the cell populations often have reduced proliferation and differentiation potential, or have become immortalized cells.
View Article and Find Full Text PDF