The nonlinear stage of modulational instability in optical fibers induced by a wide and easily accessible class of localized perturbations is studied using the nonlinear Schrödinger equation. It is shown that the development of associated spatio-temporal patterns is strongly affected by the shape and the parameters of the perturbation. Different scenarios are presented that involve an auto-modulation developing in a characteristic wedge, possibly coexisting with breathers which lie inside or outside the wedge.
View Article and Find Full Text PDFWe present a general classification of one-soliton solutions as well as families of rogue-wave solutions for F=1 spinor Bose-Einstein condensates (BECs). These solutions are obtained from the inverse scattering transform for a focusing matrix nonlinear Schrödinger equation which models condensates in the case of attractive mean-field interactions and ferromagnetic spin-exchange interactions. In particular, we show that when no background is present, all one-soliton solutions are reducible via unitary transformations to a combination of oppositely polarized solitonic solutions of single-component BECs.
View Article and Find Full Text PDFWe address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrödinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in a fully analytical way, the number and the features (amplitude and velocity) of solitonlike excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits us to predict and analyze the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation.
View Article and Find Full Text PDFWe characterize the properties of the asymptotic stage of modulational instability arising from localized perturbations of a constant background, including the number and location of the individual peaks in the oscillation region. We show that, for long times, the solution tends to an ensemble of classical (i.e.
View Article and Find Full Text PDF