Staphyloccocus aureus is one of the major pathogens in orthopedic periprosthetic joint infection (PJI), a devastating complication of total joint arthroplasty that often results in chronic and persistent infections that are refractory to antibiotics and require surgical interventions. Biofilm formation has been extensively investigated as a reason for persistent infection. The cellular composition, activation status, cytokine profile, and role of the immune response during persistent S.
View Article and Find Full Text PDFBackground: A diverse array of antibacterial solutions is utilized by orthopedic surgeons in an attempt to disperse bacterial biofilm. Few studies compare these agents against biofilm grown on clinically relevant orthopedic biomaterials, such as plastic, acrylic cement, and porous titanium.
Methods: MSSA biofilm was grown on plastic 48-well plates, polymethylmethacrylate cement beads and porous Ti-6Al-4V acetabular screw caps.
Infection with species parasites causes malaria. parasites are purine auxotrophic. They import purines via an equilibrative nucleoside transporter (ENT).
View Article and Find Full Text PDFMalaria is a critical public health issue in the tropical world, causing extensive morbidity and mortality. Infection by unicellular, obligate intracellular Plasmodium parasites causes malaria. The emergence of resistance to current antimalarial drugs necessitates the development of novel therapeutics.
View Article and Find Full Text PDFPentameric ligand-gated ion channels (pLGIC) are expressed in both excitable and non-excitable cells that are targeted by numerous clinically used drugs. Assembly from five identical or homologous subunits yields homo- or heteromeric pentamers, respectively. The protein known as Resistance to Inhibitors of Cholinesterase (RIC-3) was identified to interfere with assembly and functional maturation of pLGICs.
View Article and Find Full Text PDFPentameric ligand-gated ion channels (pLGICs), also called Cys-loop receptors in eukaryotic superfamily members, play diverse roles in neurotransmission and serve as primary targets for many therapeutic drugs. Structural studies of full-length eukaryotic pLGICs have been challenging because of glycosylation, large size, pentameric assembly, and hydrophobicity. X-ray structures of prokaryotic pLGICs, including the Gloeobacter violaceus LGIC (GLIC) and the Erwinia chrysanthemi LGIC (ELIC), and truncated eukaryotic pLGICs have significantly improved and complemented the understanding of structural details previously obtained with acetylcholine-binding protein and Torpedo nicotinic acetylcholine receptors.
View Article and Find Full Text PDF