Publications by authors named "Siska van Belle"

Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin.

View Article and Find Full Text PDF
Article Synopsis
  • MeCP2 is a protein that regulates gene expression and chromatin structure, with two main forms, E1 and E2, and its mutations are linked to Rett syndrome.
  • The study investigates how MeCP2 interacts with LEDGF, a transcription regulator, highlighting that the interaction requires a specific domain in MeCP2.
  • Results show that a mutation in MeCP2 (R306C), associated with Rett syndrome, weakens its binding to LEDGF, indicating a complex role in maintaining chromatin organization.
View Article and Find Full Text PDF

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current intensified therapeutic protocols coincide with severe side effects, and no salvage therapy is available for primary therapy-resistant or relapsed patients. This highlights the need to identify new therapeutic targets in T-ALL.

View Article and Find Full Text PDF

Lens epithelium-derived growth factor p75 (LEDGF/p75), member of the hepatoma-derived growth-factor-related protein (HRP) family, is a transcriptional co-activator and involved in several pathologies including HIV infection and malignancies such as MLL-rearranged leukemia. LEDGF/p75 acts by tethering proteins to the chromatin through its integrase binding domain. This chromatin interaction occurs between the PWWP domain of LEDGF/p75 and nucleosomes carrying a di- or trimethylation mark on histone H3 Lys36 (H3K36me2/3).

View Article and Find Full Text PDF

The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α-helix.

View Article and Find Full Text PDF

Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction.

View Article and Find Full Text PDF

Interactions between epigenetic readers and histone modifications play a pivotal role in gene expression regulation and aberrations can enact etiopathogenic roles in both developmental and acquired disorders like cancer. Typically, epigenetic interactions are studied by mass spectrometry or chromatin immunoprecipitation sequencing. However, in these methods, spatial information is completely lost.

View Article and Find Full Text PDF

Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML.

View Article and Find Full Text PDF

A permanent cure remains the greatest challenge in the field of HIV research. In order to reach this goal, a profound understanding of the molecular mechanisms controlling HIV integration and transcription is needed. Here we provide an overview of recent advances in the field.

View Article and Find Full Text PDF

MLL is an aggressive subtype of leukemia with a poor prognosis that mostly affects pediatric patients. MLL-rearranged fusion proteins (MLLr) induce aberrant target gene expression resulting in leukemogenesis. MLL and its fusions are tethered to chromatin by LEDGF/p75, a transcriptional co-activator that specifically recognizes H3K36me2/3.

View Article and Find Full Text PDF

HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for -rearranged (-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and -r leukemia.

View Article and Find Full Text PDF

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD).

View Article and Find Full Text PDF
Article Synopsis
  • LEDGF/p75 is a protein that helps other proteins attach to genes and is important for some diseases like HIV and mixed-lineage leukemia (MLL).
  • Researchers discovered how LEDGF/p75 interacts with other proteins to understand its role better, including a new partner called MED1.
  • They found out that tiny changes in the structure of these interactions can be controlled and are important for MLL, suggesting that targeting these changes might help treat leukemia.
View Article and Find Full Text PDF

Mixed lineage leukemia (MLL) represents a genetically distinct and aggressive subset of human acute leukemia carrying chromosomal translocations of the gene. These translocations result in oncogenic fusions that mediate aberrant recruitment of the transcription machinery to MLL target genes. The N-terminus of MLL and MLL-fusions form a complex with lens epithelium-derived growth factor (LEDGF/p75; encoded by the gene) and MENIN.

View Article and Find Full Text PDF