The changes and transformation laws of intermediate liquid-phase products during the anaerobic degradation of lignite by sulfate-reducing bacteria in the formation of hydrogen sulfide play an important role in supplementing and improving the existing theories on the genesis of hydrogen sulfide gas in coal mines. In this paper, HS gas and key intermediate liquid-phase products produced during the anaerobic degradation of lignite by sulfate-reducing bacteria were detected and analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the process of hydrogen sulfide production from lignite degradation by sulfate-reducing bacteria can be roughly divided into four stages: slow production phase, rapid growth phase, steady production phase, and slight decline phase.
View Article and Find Full Text PDFBacterial sulfate reduction (BSR) is one of the key factors leading to the anomalous accumulation of hydrogen sulphide in coal mines. Environmental factors such as temperature and pH play a crucial role in the metabolism and degradation of coal by sulfate-reducing bacteria (SRB). In this study, coal samples were selected from Shengli Coal Mine, and SRB strains were isolated and purified from mine water using a dilution spread-plate anaerobic cultivation method.
View Article and Find Full Text PDFBoron carbide suffers from a loss of strength and toughness when subjected to high shear stresses due to amorphization. Here, we report that a small amount of Si doping (~1 atomic %) leads to a substantial decrease in stress-induced amorphization due to a noticeable change of the deformation mechanisms in boron carbide. In the undoped boron carbide, the Berkovich indentation-induced quasi-plasticity is dominated by amorphization and microcracking along the amorphous shear bands.
View Article and Find Full Text PDFTo improve the photovoltaic performance (both efficiency and stability) in hybrid organic-inorganic halide perovskite solar cells, perovskite lattice distortion is investigated with regards to residual stress (and strain) in the polycrystalline thin films. It is revealed that residual stress is concentrated at the surface of the as-prepared film, and an efficient method is further developed to release this interfacial stress by A site cation alloying. This results in lattice reconstruction at the surface of polycrystalline thin films, which in turn results in low elastic modulus.
View Article and Find Full Text PDFThe CsPbI inorganic perovskite is a potential candidate for fabricating long-term operational photovoltaic devices owing to its intrinsic superb thermal stability. However, the carbon-based CsPbI perovskite solar cells (C-PSCs) without hole transport material (HTM) are currently disadvantaged by their relatively low power conversion efficiency resulting from the poor grain quality and mismatched energy band levels of the as-made CsPbI films. Herein we demonstrate that by doping Na into the CsPbI lattice, the grain quality is significantly improved with low defect density, and also, the energy band levels are better matched to the contact electrodes, affording a higher built-in potential.
View Article and Find Full Text PDFTwin boundary can both strengthen and soften nanocrystalline metals and has been an important path for improving the strength and ductility of nano materials. Here, using in-lab developed double-tilt tensile stage in the transmission electron microscope, the atomic scale twin boundary shearing process was in situ observed in a twin-structured nanocrystalline Pt. It was revealed that the twin boundary shear was resulted from partial dislocation emissions on the intersected {111} planes, which accommodate as large as 47% shear strain.
View Article and Find Full Text PDFα-CsPbI3 with the most suitable band gap for all-inorganic perovskite solar cell (PSC) application faces an issue of phase instability at low temperature in an air atmosphere. Herein, through stoichiometric investigation, α-CsPbI3 is successfully obtained with excess CsI at 110 °C in an air atmosphere. By doping α-CsPbI3 with Sb, phase stability is further enhanced and the film morphology is also improved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
The device instability has been an important issue for hybrid organic-inorganic halide perovskite solar cells (PSCs). This work intends to address this issue by exploiting inorganic perovskite (CsPbBr) as light absorber, accompanied by replacing organic hole transport materials (HTM) and the metal electrode with a carbon electrode. All the fabrication processes (including those for CsPbBr and the carbon electrode) in the PSCs are conducted in ambient atmosphere.
View Article and Find Full Text PDFCarbon-based hole transport material (HTM)-free perovskite solar cells (PSCs) have attracted intense attention due to their relatively high stability. However, their power conversion efficiency (PCE) is still low, especially for the simplest paintable carbon-based PSCs (C-PSCs), whose performance is greatly limited by poor contact at the perovskite/carbon interface. To enhance interface contact, it is important to fabricate an even-surface perovskite layer in a porous scaffold, which is not usually feasible due to roughness of the crystal precursor.
View Article and Find Full Text PDFWith our recently developed deformation device, the in situ tensile tests of single crystal molybdenum nanowires with various size and aspect ratio were conducted inside a transmission electron microscope (TEM). We report an unusual ambient temperature (close to room temperature) super-plastic elongation above 127% on single crystal body-centred cubic (bcc) molybdenum nanowires with an optimized aspect ratio and size. A novel dislocation "bubble-like-effect" was uncovered for leading to the homogeneous, large and super-plastic elongation strain in the bcc Mo nanowires.
View Article and Find Full Text PDF