Publications by authors named "Sisi Gu"

We experimentally and theoretically study a driven hybrid circuit quantum electrodynamics (cQED) system beyond the dispersive coupling regime. Treating the cavity as part of the driven system, we develop a theory applicable to such strongly coupled and to multiqubit systems. The fringes measured for a single driven double quantum dot (DQD)-cavity setting and the enlarged splittings of the hybrid Floquet states in the presence of a second DQD are well reproduced with our model.

View Article and Find Full Text PDF

We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity ( > 17.

View Article and Find Full Text PDF

We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator. Highly distinctive and unique geometric patterns are revealed as we tune the qubit tunnel couplings relative to the frequency of the mediating photons. These patterns are in excellent agreement with a simulation using the Tavis-Cummings model, and allow us to readily identify different parameter regimes for both qubits in the detuning space.

View Article and Find Full Text PDF