Publications by authors named "Sisi Gao"

It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation.

View Article and Find Full Text PDF

The therapeutic benefit of recently developed mutant KRAS (mKRAS) inhibitors has been limited by the rapid onset of resistance. Here, we aimed to delineate the mechanisms underlying acquired resistance to mKRAS inhibition and identify actionable targets for overcoming this clinical challenge. Previously, we identified Syndecan-1 (SDC1) as a key effector for pancreatic cancer progression whose surface expression is driven by mKRAS.

View Article and Find Full Text PDF

Combination approaches are needed to strengthen and extend the clinical response to KRAS inhibitors (KRASi). Here, we assessed the antitumor responses of KRAS mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRAS inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are important non-coding RNA entities that affect gene expression and function by binding to target mRNAs, leading to degradation of the mRNAs or inhibiting their translation. MiRNAs are widely involved in a variety of biological processes, such as cell differentiation, development, metabolism, and apoptosis. In addition, miRNAs are associated with many diseases, including cancer.

View Article and Find Full Text PDF

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination.

View Article and Find Full Text PDF

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor . Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT.

View Article and Find Full Text PDF

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring combination therapies to enhance the effectiveness of KRAS targeted therapy in cancer treatment.
  • The study shows that combining the SOS1-KRAS inhibitor BI-3406 with a KRAS inhibitor yields a stronger anti-tumor response than using either treatment alone or other combinations in lung and colorectal cancer models.
  • This combination not only suppresses key cancer signaling pathways more effectively but also helps delay drug resistance, making it a promising strategy for tackling KRAS-mutated tumors and overcoming resistance to KRAS inhibitors.
View Article and Find Full Text PDF

Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759.

View Article and Find Full Text PDF

Inflammation is a major risk factor for pancreatic ductal adenocarcinoma (PDAC). When occurring in the context of pancreatitis, KRAS mutations accelerate tumor development in mouse models. We report that long after its complete resolution, a transient inflammatory event primes pancreatic epithelial cells to subsequent transformation by oncogenic KRAS.

View Article and Find Full Text PDF

Glioblastoma (GBM) is highly resistant to chemotherapies, immune-based therapies, and targeted inhibitors. To identify novel drug targets, we screened orthotopically implanted, patient-derived glioblastoma sphere-forming cells using an RNAi library to probe essential tumor cell metabolic programs. This identified high dependence on mitochondrial fatty acid metabolism.

View Article and Find Full Text PDF

The enzyme ForT catalyzes C-C bond formation between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and 4-amino-1H-pyrazole-3,5-dicarboxylate to make a key intermediate in the biosynthesis of formycin A 5'-phosphate by Streptomyces kaniharaensis. We report the 2.5 Å resolution structure of the ForT/PRPP complex and locate active site residues critical for PRPP recognition and catalysis.

View Article and Find Full Text PDF

ForI is a PLP-dependent enzyme from the biosynthetic pathway of the C-nucleoside antibiotic formycin. Cycloserine is thought to inhibit PLP-dependent enzymes by irreversibly forming a PMP-isoxazole. We now report that ForI forms novel PMP-diketopiperazine derivatives following incubation with both d and l cycloserine.

View Article and Find Full Text PDF

Humans have greatly altered Earth's night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings).

View Article and Find Full Text PDF

Stress-induced inhibition of innate immune activity has been observed in a variety of wild birds and may increase chances of infection because this activity constitutes the first line of defense against pathogens. We previously reported that the transient elevation of plasma corticosterone (CORT; the primary avian glucocorticoid) that occurs during stress is necessary for stress-induced suppression of natural antibody-mediated, complement-mediated, and bactericidal activity. Here, we further investigated the regulatory role of CORT during this suppression.

View Article and Find Full Text PDF

The five-membered nitrogen plus heteroatom rings known as azolines or in their oxidized form as azoles are very common in natural products and drugs. The oxidation of thiazoline to thiazole in the cyanobactin class of natural products is one of the several important transformations that are known to alter the biological properties of the compound. The ordering of the various chemical reactions that occur during cyanobactin biosynthesis is not fully understood.

View Article and Find Full Text PDF

Urban environments are rapidly expanding and presenting animal populations with novel challenges, many of which are thought to be stressors that contribute to low biodiversity. However, studies on stress responses in urban vs rural populations have produced mixed results, and many of these studies use a standard stressor that cannot be replicated in the wild (e.g.

View Article and Find Full Text PDF

Stress-induced inhibition of innate immune activity is widespread in free-ranging birds, but the mechanisms that are responsible for this inhibition are poorly understood. We previously demonstrated that an increase in plasma corticosterone (CORT), the primary avian glucocorticoid, is necessary for the inhibition of natural antibody- and complement-mediated as well as bactericidal activities to occur during stress. Here we investigated the role of glucocorticoid receptors in stress-induced inhibition of natural antibody- and complement-mediated activities and bactericidal activity within non-genomic (<10 min) and genomic (<120 min) time frames in male House Sparrows, Passer domesticus.

View Article and Find Full Text PDF

To maximize fitness, organisms must invest energetic and nutritional resources into developing, activating, and maintaining reproductive physiology and behavior. Corticosterone (CORT), the primary avian glucocorticoid, regulates energetic reserves to meet metabolic demands. At low (baseline) plasma levels, CORT activates avian mineralocorticoid receptors and may stimulate lipid mobilization, foraging activity, and feeding behavior.

View Article and Find Full Text PDF

Stress-induced effects on innate immune activity in wild birds have been difficult to predict. These difficulties may arise from the frequent assumptions that (1) the stress response influences different components of the immune response similarly, (2) stress-induced effects do not change over the course of the stress response and (3) glucocorticoids are the primary regulators of stress-induced changes of immune activity. We tested the first two assumptions by measuring three components of innate immunity at two times during the stress response in captive adult male house sparrows, Passer domesticus Acute stress resulting from handling and restraint suppressed plasma lytic and microbicidal activity within 10 min and reduced plasma agglutination ability within 120 min.

View Article and Find Full Text PDF

Acute stress in vertebrates generally stimulates the hypothalamo-pituitary-adrenal axis and is often associated with multiple metabolic changes, such as increased gluconeogenesis, and with behavioral alterations. Little information is available, especially in free-ranging organisms, on the duration of these reversible effects once animals are no longer exposed to the stressor. To investigate this question, we exposed free-ranging adult male Rufous-winged Sparrows, Peucaea carpalis, in breeding condition to a standard protocol consisting of a social challenge (conspecific song playback) followed with capture and restraint for 30min, after which birds were released on site.

View Article and Find Full Text PDF

We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia.

View Article and Find Full Text PDF

Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation.

View Article and Find Full Text PDF

Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation.

View Article and Find Full Text PDF