Publications by authors named "Sisheng Ouyang"

In the cytoplasm of virtually all clear-cell renal cell carcinoma (ccRCC), speckle-type POZ protein (SPOP) is overexpressed and misallocated, which may induce proliferation and promote kidney tumorigenesis. In normal cells, however, SPOP is located in the nucleus and induces apoptosis. Here we show that a structure-based design and subsequent hit optimization yield small molecules that can inhibit the SPOP-substrate protein interaction and can suppress oncogenic SPOP-signaling pathways.

View Article and Find Full Text PDF

The transcriptional coactivator and histone acetyltransferase (HAT) p300 acetylates the four core histones and other transcription factors to regulate a plethora of fundamental biological processes including cell growth, development, oncogenesis and apoptosis. Recent structural and biochemical studies on the p300 HAT domain revealed a Theorell-Chance, or "hit-and-run", catalytic mechanism. Nonetheless, the chemical mechanism of the entire reaction process including the proton transfer (PT) scheme and consequent acetylation reaction route remains unclear.

View Article and Find Full Text PDF

Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear.

View Article and Find Full Text PDF

Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved.

View Article and Find Full Text PDF

The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To date, as a potential drug target for discovering anti-tumor drugs, the medical significance of LSD1 has been greatly appreciated.

View Article and Find Full Text PDF

Sir2, the histone deacetylase III family, has been subjected to a wide range of studies because of their crucial roles in DNA repair, longevity, transcriptional silencing, genome stability, apoptosis, and fat mobilization. The enzyme binds NAD(+) and acetyllysine as substrates and generates lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide as products. However, the mechanism of the first step in Sir2 deacetylation reaction from various studies is controversial.

View Article and Find Full Text PDF

In silico drug target identification, which includes many distinct algorithms for finding disease genes and proteins, is the first step in the drug discovery pipeline. When the 3D structures of the targets are available, the problem of target identification is usually converted to finding the best interaction mode between the potential target candidates and small molecule probes. Pharmacophore, which is the spatial arrangement of features essential for a molecule to interact with a specific target receptor, is an alternative method for achieving this goal apart from molecular docking method.

View Article and Find Full Text PDF

Background: Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones.

View Article and Find Full Text PDF