Publications by authors named "Sishan Chen"

Article Synopsis
  • * In a study of 324 patients, those evaluated with 3D visualization experienced significantly lower blood loss, shorter operation times, and fewer complications compared to those who did not use 3D technology.
  • * A meta-analysis of 11 studies confirmed that using 3D visualization for RAPN led to a 55% reduction in the risk of collecting system injuries and an 81% lower risk of needing blood transfusions, indicating a notable advantage in surgical outcomes.
View Article and Find Full Text PDF

Objective: Upper urinary tract urothelial carcinoma (UUT-UC) is a very aggressive disease, characterized by 22%-50% of patients suffering from subsequent bladder recurrence after radical nephroureterectomy (RNU). Although the therapy of intravesical instillation is reported to be effective in preventing bladder recurrence, no study had been reported in Northeast China. The findings relating to the clinical effectiveness of intravesical instillation after RNU are somewhat controversial, and the best efficacy and least adverse effects of instillation drugs have not been widely accepted.

View Article and Find Full Text PDF

Fundamental understanding of how the hydrophobicity impacts cellular interactions of engineered nanoparticles is critical to their future success in healthcare. Herein, we report that inserting hydrophobic octanethiol onto the surface of zwitterionic luminescent glutathione coated gold nanoparticles (GS-AuNPs) of 2 nm enhanced their affinity to the cellular membrane and increased cellular uptake kinetics by more than one order of magnitude, rather than inducing the accumulation of the AuNPs in the bilayer core or enhancing their passive diffusion. These studies highlight the diversity and heterogeneity in the hydrophobicity-induced nano-bio interactions at the cellular level and offer a new pathway to expediting cellular uptake of engineered nanoparticles.

View Article and Find Full Text PDF

Interactions between fluorophores and plasmonic nanoparticles modify the fluorescence intensity, shape, and position of the observed emission pattern, thus inhibiting efforts to optically super-resolve plasmonic nanoparticles. Herein, we investigate the accuracy of localizing dye fluorescence as a function of the spectral and spatial separations between fluorophores (Alexa 647) and gold nanorods (NRs). The distance at which Alexa 647 interacts with NRs is varied by layer-by-layer polyelectrolyte deposition while the spectral separation is tuned by using NRs with varying localized surface plasmon resonance (LSPR) maxima.

View Article and Find Full Text PDF

Fluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations.

View Article and Find Full Text PDF

The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration.

View Article and Find Full Text PDF

Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule.

View Article and Find Full Text PDF

Cellular response of inorganic nanoparticles (NPs) is strongly dependent on their surface chemistry. By taking advantage of robust single-particle fluorescence and giant Raman enhancements of unique polycrystalline silver NPs (AgNPs), we quantitatively investigated effects of two well-known surface chemistries, passive PEGylation and active c-RGD peptide conjugation, on in vitro behaviors of AgNPs at high temporal and spatial resolution as well as chemical level using fluorescence and Raman microscopy. The results show that specific c-RGD peptide-αvβ3 integrin interactions not only induced endosome formation more rapidly, enhanced constrained diffusion, but also minimized nonspecific chemical interactions between the NPs and intracellular biomolecules than passive PEGylation chemistry; as a result, surface enhanced Raman scattering (SERS) signals of c-RGD peptides were well resolved inside endosomes in the live cells, while Raman signals of PEGylated AgNPs remained unresolvable due to interference of surrounding biomolecules, opening up an opportunity to investigate specific ligand-receptor interactions in real time at the chemical level.

View Article and Find Full Text PDF