Glycated conjugation of plant protein such as soy protein isolate (SPI) with saccharides is one popular strategy to modify the physicochemical characteristics of these plant protein resources, which may be affected by the glycation methods including dry-heating and wet-heating. In this study, the impact of these two glycation methods on the rheological and emulsifying properties of a binary system made by SPI-gum Arabic (GA) was studied. The results indicated that dry-heating conjugates had higher viscosity and more elastic characteristics than those wet-heating conjugates.
View Article and Find Full Text PDFSediment organic carbon (SOC) is a precious archive that synthesizes anthropogenic processes that remove geochemical fluxes from watersheds. However, the scarcity of inspection about the dynamic mechanisms of anthropogenic activities on SOC limits understanding into how key human factors drive carbon dynamics. Here, four typical basins with similar natural but significantly diverse human contexts (high-moderate-low disturbance: XJ-ZS and YJ-LS) were selected to reconstruct sedimentation rates (SR) and SOC dynamics nearly a century based on 200-cm corers.
View Article and Find Full Text PDFGallium nitride (GaN), a promising alternative semiconductor to Si, is widely used in photoelectronic and electronic technologies. However, the vulnerability of the GaN surface is a critical restriction that hinders the development of GaN-based devices, especially in terms of device stability and reliability. In this study, this challenge is overcome by converting the GaN surface into a gallium oxynitride (GaON) epitaxial nanolayer through an in situ two-step "oxidation-reconfiguration" process.
View Article and Find Full Text PDFStabilizing emulsion using complex biopolymers is a common strategy. It would be very interesting to characterize the impact of charge density on the emulsifying properties of complex polyelectrolytes carrying opposite charges. In this study, cationic modified microcrystalline celluloses (CMCC) of different charge densities were prepared and mixed with soy protein isolate (SPI) for emulsion applications.
View Article and Find Full Text PDFA hybrid field-effect transistor (HyFET), superior for power electronic applications, can be created by harnessing the merits of two representative wide-bandgap semiconductors, gallium nitride (GaN) and silicon carbide (SiC). Yet, the incompactness in the epitaxy techniques hinders the development of the HyFET-GaN is usually grown on on-axis foreign substrates including SiC, whereas SiC homoepitaxy prefers off-axis substrates. This work presents a GaN-based heterostructure epitaxially grown on a conventional 4° off-axis 4H-SiC substrate, which manifests its high quality and suitability for constructing GaN-based high-electron-mobility transistors, thereby suggesting a practical approach to realizing HyFETs.
View Article and Find Full Text PDFNatural polysaccharide-based hydrogels are promising in food and pharmaceutical applications. In this study, the potential of composite hydrogels prepared by carboxymethyl cellulose (CMC) and chitosan as glue for cigar wrapping applications was firstly studied. The impacts of degree of carboxymethyl substitution (DS) and the ratio of CMC:chitosan on the adhesive performance and rheological behaviors of composite hydrogels have been investigated.
View Article and Find Full Text PDFCarboxymethyl cellulose (CMC) hydrogels have been used as adhesive materials for food and other newly emerged innovative applications. To increase the knowledge of CMC hydrogel-based adhesives and optimize the preparation and storage conditions in practical, we prepared CMC hydrogels for cigar wrapper application and investigated their adhesive performance as affected by different CMC type, concentration, pH, temperature, and storage time, etc. Two parameters, initial adhesiveness and peel strength were used to evaluate the adhesive behavior of CMC with paper and tobacco leaf.
View Article and Find Full Text PDFResearch (Wash D C)
January 2021
There is a rising prospective in harvesting energy from the environment, as in situ energy is required for the distributed sensors in the interconnected information society, among which the water flow energy is the most potential candidate as a clean and abundant mechanical source. However, for microscale and unordered movement of water, achieving a sustainable direct-current generating device with high output to drive the load element is still challenging, which requires for further exploration. Herein, we propose a dynamic PN water junction generator with moving water sandwiched between two semiconductors, which outputs a sustainable direct-current voltage of 0.
View Article and Find Full Text PDFStatic heterojunction-based electronic devices have been widely applied because carrier dynamic processes between semiconductors can be designed through band gap engineering. Herein, we demonstrate a tunable direct-current generator based on the dynamic heterojunction, whose mechanism is based on breaking the symmetry of drift and diffusion currents and rebounding hot carrier transport in dynamic heterojunctions. Furthermore, the output voltage can be delicately adjusted and enhanced with the interface energy level engineering of inserting dielectric layers.
View Article and Find Full Text PDFThe overloaded energy cost has become the main concern of the now fast developing society, which make novel energy devices with high power density of critical importance to the sustainable development of human society. Herein, a dynamic Schottky diode based generator with ultrahigh power density of 1262.0 W m for sliding Fe tip on rough p-type silicon is reported.
View Article and Find Full Text PDFPhotodetectors based on graphene/GaAs heterostructure were fabricated and demonstrated for application in self-powered photodetection. Then, Si quantum dots (QDs) were spin-coated onto the surface of the devices to enhance the built-in field by photo-induced doping, because of the tunable Fermi level (E ) of graphene and shallow junction of the heterojunction. Additionally, Au nanoparticles working as a light trapping structure were used to the enhance quantum efficiency of the Si QDs and the optical absorption of the heterojunction, benefitting from localized surface plasmon resonance.
View Article and Find Full Text PDFThe static PN junction is the foundation of integrated circuits. Herein, we pioneer a high current density generation by mechanically moving N-type semiconductor over P-type semiconductor, named as the dynamic PN junction. The establishment and destruction of the depletion layer causes the redistribution and rebounding of diffusing carriers by the built-in field, similar to a capacitive charge/discharge process of PN junction capacitance during the movement.
View Article and Find Full Text PDFTraditionally, Schottky diodes are used statically in the electronic information industry while dynamic or moving Schottky diode-based applications are rarely explored. Herein, a novel Schottky diode named "moving Schottky diode generator" is designed, which can convert mechanical energy into electrical energy by means of lateral movement between the graphene/metal film and semiconductor. The mechanism is based on the built-in electric field separation of the diffusing carriers in moving Schottky diode.
View Article and Find Full Text PDFBy combining the surface plasmon enhancement technique with gating effect, a tunable blue lighting emitting diode (LED) based on graphene/Ag nanoparticles (NPs)-polymethyl methacrylate (PMMA)/graphene/p-GaN heterostructure has been achieved. The surface plasmon enhancement is introduced through spin-coating Ag nanoparticles on graphene/p-GaN heterostructure while the gating effect is demonstrated through a graphene/PMMA/graphene sandwich structure, where the top graphene layer acts as the gate electrode. Compared with initial graphene/p-GaN heterostructure LEDs, the electroluminescence (EL) emission intensity of Ag NPs/graphene/p-GaN heterostructure LEDs has been largely enhanced, attributing to the surface plasmon resonance (SPR) of Ag nanoparticles.
View Article and Find Full Text PDF2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical-to-electrical conversion efficiency.
View Article and Find Full Text PDF