Health event prediction is empowered by the rapid and wide application of electronic health records (EHR). In the Intensive Care Unit (ICU), precisely predicting the health related events in advance is essential for providing treatment and intervention to improve the patients outcomes. EHR is a kind of multi-modal data containing clinical text, time series, structured data, etc.
View Article and Find Full Text PDFObjectives: This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.
Materials And Methods: PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks.
Electronic phenotyping is a fundamental task that identifies the special group of patients, which plays an important role in precision medicine in the era of digital health. Phenotyping provides real-world evidence for other related biomedical research and clinical tasks, e.g.
View Article and Find Full Text PDFBackground: Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches.
Objectives: We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension.
AMIA Annu Symp Proc
January 2024
Clinical trials are indispensable in developing new treatments, but they face obstacles in patient recruitment and retention, hindering the enrollment of necessary participants. To tackle these challenges, deep learning frameworks have been created to match patients to trials. These frameworks calculate the similarity between patients and clinical trial eligibility criteria, considering the discrepancy between inclusion and exclusion criteria.
View Article and Find Full Text PDFAMIA Annu Symp Proc
January 2024
Organ transplant is the essential treatment method for some end-stage diseases, such as liver failure. Analyzing the post-transplant cause of death (CoD) after organ transplant provides a powerful tool for clinical decision making, including personalized treatment and organ allocation. However, traditional methods like Model for End-stage Liver Disease (MELD) score and conventional machine learning (ML) methods are limited in CoD analysis due to two major data and model-related challenges.
View Article and Find Full Text PDFThe emphasis on fairness in predictive healthcare modeling has increased in popularity as an approach for overcoming biases in automated decision-making systems. The aim is to guarantee that sensitive characteristics like gender, race, and ethnicity do not influence prediction outputs. Numerous algorithmic strategies have been proposed to reduce bias in prediction results, mitigate prejudice toward minority groups and promote prediction fairness.
View Article and Find Full Text PDFAMIA Annu Symp Proc
May 2023
Liver transplant is an essential therapy performed for severe liver diseases. The fact of scarce liver resources makes the organ assigning crucial. Model for End-stage Liver Disease (MELD) score is a widely adopted criterion when making organ distribution decisions.
View Article and Find Full Text PDF