Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.
View Article and Find Full Text PDFScalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing.
View Article and Find Full Text PDFClassifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing.
View Article and Find Full Text PDFSci Bull (Beijing)
February 2022
To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture.
View Article and Find Full Text PDFQuantum error correction is a critical technique for transitioning from noisy intermediate-scale quantum devices to fully fledged quantum computers. The surface code, which has a high threshold error rate, is the leading quantum error correction code for two-dimensional grid architecture. So far, the repeated error correction capability of the surface code has not been realized experimentally.
View Article and Find Full Text PDFScaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles.
View Article and Find Full Text PDFQuantum walks are the quantum mechanical analog of classical random walks and an extremely powerful tool in quantum simulations, quantum search algorithms, and even for universal quantum computing. In our work, we have designed and fabricated an 8-by-8 two-dimensional square superconducting qubit array composed of 62 functional qubits. We used this device to demonstrate high-fidelity single- and two-particle quantum walks.
View Article and Find Full Text PDFThe flavoprotein methylenetetrahydrofolate reductase (MTHFR) from Escherichia coli catalyzes a ping-pong reaction with NADH and 5,10-methylenetetrahydrofolate (CH-Hfolate) to produce NAD and 5-methyltetrahydrofolate (CH-Hfolate). This work focuses on the function of the invariant, active-site aminoacyl residue Gln183. X-ray structures of the enzyme complexes E(wild-type)•NADH and E(Glu28Gln)•CH-Hfolate indicate that Gln183 makes key hydrogen-bonding interactions with both NADH and folate in their respective half-reactions, suggesting roles in binding each substrate.
View Article and Find Full Text PDF