Integration of different therapeutic performances into one platform is an innovative development for using multiple applications in real-time. In this paper, for the first time we exploited the concurrent capacity of radio and photosensitizing in a theranostic nanoMOFs based on bismuth, zirconium, and porphyrin. The porosity of nanoMOFs provided the capability of doxorubicin loading and chemotherapy besides enhanced photodynamic and radiation therapy (PDT & RT).
View Article and Find Full Text PDFIn the current study, a core-shell inorganic nanostructure comprising a gold nanorod core and -mesoporous manganese dioxide shell was synthesized. Then, the mesoporous manganese dioxide shell was loaded with doxorubicin (DOX) and then coated with pluronic F127 and pluronic F127-folic acid conjugate (1.5:1 wt ratio of pluronic F127: pluronic F127-folic acid conjugate) to prepare targeted final platform.
View Article and Find Full Text PDFIn the current study, a tumor microenvironment responsive (TME-responsive) copper peroxide-mesoporous silica core-shell structure with HO self-supplying ability was fabricated for targeted ferroptosis/chemotherapy against metastatic breast cancer. At the first stage, copper peroxide nanodot was synthesized and subsequently coated with mesoporous organosilica shell. After (3-Aminopropyl) triethoxysilane (APTMS) functionalization of the organosilica shell, doxorubicin (DOX) was loaded in the mesoporous structure of the nanoparticles and then, heterofunctional COOH-PEG-Maleimide was decorated on the surface through EDC/NHS chemistry.
View Article and Find Full Text PDFMultimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis.
View Article and Find Full Text PDFLiquid crystalline nanoparticles (LCNPs) have gained much attention in cancer nanomedicines due to their unique features such as high surface area, storage stability, and sustained-release profile. In the current study, a novel LCNP for co-encapsulation of BiO and hydrophilic doxorubicin (DOX) was fabricated and functionalized with folic acid (FA) to achieve efficient tumor targeting toward CT-scan imaging and chemotherapy of melanoma in vitro and in vivo. LCNPs BiO NPs were prepared using glycerol monooleate-pluronic F-127 (GMO/PF127/water).
View Article and Find Full Text PDFEur J Pharm Biopharm
June 2023
Mesenchymal stem cell membrane (MSCM)-coated biomimetic doxorubicin-loaded hollow gold nanoparticles were fabricated and decorated with MUC1 aptamer in order to provide smart theranostic platform. The prepared targeted nanoscale biomimetic platform was extensively characterized and evaluated in terms of selective delivery of DOX and CT-scan imaging. The fabricated system illustrated spherical morphology with 118 nm in diameter.
View Article and Find Full Text PDFTheranostic nanoparticles with both imaging and therapeutic capacities are highly promising in successful diagnosis and treatment of advanced cancers. Here, we developed magnetic mesoporous silica nanoparticles (MSNs) loaded with 5-fluorouracil (5-FU) and surface-decorated with polyethylene glycol (PEG), and epithelial cell adhesion molecule (EpCAM) aptamer (Apt) for controlled release of 5-FU and targeted treatment of colorectal cancer (CRC) both and . In this system, Au NPs are conjugated onto the exterior surface of MSNs as a gatekeeper for intelligent release of the anti-cancer drug at acidic conditions.
View Article and Find Full Text PDFPeptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid.
View Article and Find Full Text PDFThree-dimensional models are used to guide residents and physicians in accessing specific anatomical areas and types of fractures and better diagnosis of anomalies. These models are useful for illuminating complex anatomical areas, such as orbit, especially limited space with sensitive access. The aim of this study was to design a three-dimensional visualization educational modeling for ophthalmology residents' training.
View Article and Find Full Text PDFObjectives: Designing and fabrication of theranostic systems based on nanoscale gaseous vesicular systems, named nanobubbles (NBs), attracted enormous interest in recent years. Biomimetic vesicular platform (V-RBC-M) can improve the pharmacokinetics of the prepared platform due to augmented circulation half-life, desirable biodegradability and biocompatibility and reduced immunogenicity.
Methods: V-RBC-M were used for the encapsulation of lipophilic camptothecin (CPT) in the bilayer of vesicles through top-down method, followed by filling the core of V-RBC-M with inert SF6 gas to fabricate NBs with ultrasonic contrast enhancement capability (SF6-NB-CPT).
Background: Cancer nanomedicines based on synthetic polypeptides have attracted much attention due to their superior biocompatibility and biodegradability, stimuli responsive capability through secondary conformation change, adjustable functionalities for various cargos such as peptides, proteins, nucleic acids and small therapeutic molecules. Recently, a few nanoformulations based on polypeptides comprising NK105, NC6004, NK911, CT2103, have entered phase I-III clinical trials for advanced solid tumors therapy. In the current study, we prepared polypeptide-based vesicles called peptosome via self-assembly of amphiphilic polypeptide-based PEG-PBLG diblock copolymer.
View Article and Find Full Text PDFIn the current study, a multifunctional nanoscale vesicular system (polymersome) with the ability to accumulate in the site of action, control drug release and integrate diagnostic and therapeutic functions was developed. The theranostic polymersome was engineered as a promising dual-functional nanoplatform, which can be used for tumor therapy and magnetic resonance imaging (MRI). In this regard, the amphiphilic diblock copolymer of poly(ε-caprolactone)-block-poly(glyceryl methacrylate)[(PCL-b-PGMA)] was synthesized by combined ring-opening polymerization (ROP), and reversible addition-fragmentation chain-transfer (RAFT) polymerization techniques followed by hydrolysis of the pendant oxiran rings to hydroxyl groups.
View Article and Find Full Text PDFBackground: Nanoscale coordination polymers (nCP) have exhibited a great potential in designing of the theranostic platforms in the latest years. However, they have low selectivity for cancerous tissues and require to be modified for becoming effective cancer therapeutics. In this study, a novel nanoscale pH and redox-responsive coordination polymer with high selectivity was synthesized.
View Article and Find Full Text PDFPurpose: The aim of this study was to determine the efficacy of using 3D printing models in the learning process of orbital anatomy and pathology by ophthalmology residents.
Methods: A quasi-experimental study was performed with 24 residents of ophthalmology at Mashhad University of Medical Sciences. Each stratum was randomized into two groups.
Background: Improving anti-cancer drug delivery performance can be achieved through designing smart and targeted drug delivery systems (DDSs). For this aim, it is important to evaluate overexpressed biomarkers in the tumor microenvironment (TME) for optimizing DDSs.
Materials And Methods: Herein, we designed a novel DDS based on magnetic mesoporous silica core-shell nanoparticles (SPION@MSNs) in which release of doxorubicin (DOX) at the physiologic pH was blocked with gold gatekeepers.
Objective: The gold standard for the diagnosis of lung cancer is conducting a histopathologic study. It is also diagnosed based on some features of a computed tomography (CT) scan. Imposed radiation is a prominent side effect of a CT scan.
View Article and Find Full Text PDFThe objective of the current study is to design and delivery of targeted PEG-PCL nanopolymersomes encapsulated with Gadolinium based Quantum Dots (QDs) and Doxorubicin (DOX) as magnetic resonance-florescence imaging and anti-cancer agent. Diagnostic and therapeutic efficiency of the prepared theranostic formulation was evaluated in vitro and in vivo. Hydrophobic QDs based on indium-copper-gadolinium-zinc sulfide were synthesized and characterized extensively.
View Article and Find Full Text PDFBackground And Purpose: Appropriate images extracted from the MRI of mothers' wombs can be of great help in the medical diagnosis of fetal abnormalities. As maternal tissue may appear in such images, affecting visualization of myelination of the fetal brain, it is not possible to use methods routinely used for extraction of adult brains for fetal brains. The aim of the present study was to use a variational level set approach to extract fetal brain from T2-weighted MR images of the womb.
View Article and Find Full Text PDFWe have evaluated the capability of a collagen/poly glycolic acid (PGA) scaffold in regeneration of a calvarial bone defects in rabbits. 4 bone critical size defects (CSD) were created in the calvarial bone of each rabbit. The following 4 treatment modalities were tested (1) a collagen/PGA scaffold (0.
View Article and Find Full Text PDFGerminoma is the most common type of intracranial germ cell tumors (GCTs). Pineal gland and suprasellar region are the most frequent sites of central nervous system (CNS) involvement. Intracranial masses caused by Langerhans cell histiocytosis (LCH) mimics features of CNS GCTs.
View Article and Find Full Text PDFBackground: Increased subcutaneous fat thickness and depth of target organs in over-obese patients, results in weak signals and inadequate images. Tissue harmonic imaging has been used widely in obese patients and is believed to result in higher quality images. This superiority is not proved in modern machines with improved image quality in conventional mode.
View Article and Find Full Text PDFOrbital floor fractures alone or in conjunction with other facial skeletal fractures are the most commonly encountered midfacial fractures. The technological advances in 3-dimensional (3D) printing allow the physical prototyping of 3D models, so creates an accurate representation of the patient's specific anatomy. A 56-year-old Caucasian man with severe hypoglobus and enophthalmos with an extensive blowout fracture was scheduled for reconstruction.
View Article and Find Full Text PDFBackground: Placenta adhesive disorder (PAD) is one of the most common causes of postpartum hemorrhage and peripartum hysterectomy. The main risk factors are placenta previa and prior uterine surgery such as cesarean section. Diagnosis of placenta adhesive disorders can lead to a decrease of maternal mortality and morbidities.
View Article and Find Full Text PDFObjectives. The aim of this article is to represent the first reported case with cooccurrence of two rare alcohol related complications. Case Report.
View Article and Find Full Text PDF