Layered perovskites consist of stacks of inorganic semiconducting metal-halide octahedra lattices sandwiched between organic layers with typically dielectric behavior. The in-plane confinement of electrical carriers in such two-dimensional metal halide perovskites drives a large range of appealing electronic properties, such as strong exciton binding, anisotropic charge diffusion, and polarization-directionality. Heterostructures provide additional control on carrier diffusion and localization, and in-plane heterojunctions are interesting because of the associated high charge mobility.
View Article and Find Full Text PDFMagic clusters have attracted significant interest to explore the dynamics of quantum dot (QD) nucleation and growth. At the same time, CdSe magic-sized QDs reveal broadband emission in the visible wavelength region, which advantageously offer simple integration of a single-type of nanomaterial and high color rendering ability for white light-emitting diodes (LEDs). Here, we optimized the quantum yield of magic-sized CdSe QDs up to 22% via controlling the synthesis parameters without any shelling or post-treatment process and integrated them in liquid-state on blue LED to prevent the efficiency drop due to host-material effect.
View Article and Find Full Text PDF