The interaction of Sn(II) with metastable, highly reactive mackinawite is a complex process due to transient changes of the mackinawite surface in the sorption process. In this work, we show that tin redox state and local structure as investigated by Sn-K X-ray absorption spectroscopy (XAS) change with pH. We observe at pH<7 that divalent Sn forms two short (2.
View Article and Find Full Text PDFTo elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level < 2 ppmv. Tin redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes.
View Article and Find Full Text PDFThe long-lived fission product 126Sn is of substantial interest in the context of nuclear waste disposal in deep underground repositories. However, the prevalent redox state, the aqueous speciation as well as the reactions at the mineral-water interface under the expected anoxic and reducing conditions are a matter of debate. We therefore investigated the reaction of Sn(II) with a relevant redox-reactive mineral, magnetite (Fe(II)Fe(III)2O4) at <2 ppmv O2, and monitored Sn uptake as a function of pH and time.
View Article and Find Full Text PDF