Publications by authors named "Siriwalee Siriwibool"

Cyclic peptides comprising endocyclic organic fragments, "cyclo-organopeptides", can be probes for perturbing protein-protein interactions (PPIs). Finding loop mimics is difficult because of high conformational variability amongst targets. Backbone Matching (BM), introduced here, helps solve this problem in the illustrative cases by facilitating efficient evaluation of virtual cyclo-organopeptide core-structure libraries.

View Article and Find Full Text PDF

Near-IR fluorescent sensitizers based on heptamethine cyanine (Cy820 and Cy820-IMC) were synthesized and their abilities to target and abolish tumor cells via photodynamic therapy (PDT) were explored. Some hepthamethine cyanine dyes can be transported into cancer cells via the organic anion transporting polypeptides (OATPs). In this study, we aimed to enhance the target ability of the sensitizer by conjugation Cy820 with indomethacin, a non-steroidal anti-inflammatory drug (NSAID), to obtain Cy820-IMC that aimed to target cyclooxygenase-2 (COX-2) which overexpresses in cancer cells.

View Article and Find Full Text PDF

We designed and synthesized two heptamethine cyanine-based theranostic probes that aimed to target COX-2 in cancer cells. One is I-IR799-CXB, in which I-IR799 is conjugated to the COX-2-specific inhibitor, celecoxib, and another is I-IR799-IMC, where the non-selective COX inhibitor, indomethacin, was used. I-IR799 is a heptamethine cyanine derivative that can be activated by near-infrared light for photodynamic therapy (PDT) purposes.

View Article and Find Full Text PDF

Nucleocidin 1 produced by is one of five characterized natural products containing fluorine. It was discovered in 1956, but its biosynthesis is not yet completely resolved. Recently, the biosynthetic gene cluster of 1 was identified.

View Article and Find Full Text PDF

We developed a pH dependent amino heptamethine cyanine based theranostic probe (I-IR783-Mpip) that can be activated by near infrared light. I-IR783-Mpip, in acidic condition, exhibited an intense, broad NIR absorption band (820-950 nm) with high singlet oxygen generation upon exposure to NIR light (~850 nm). Theoretical calculations showed that the protonation of the probe in an acidic environment decreased the molecular orbital energy gaps and increased the intramolecular charge transfer efficiency.

View Article and Find Full Text PDF