This review summarizes the recent advances in preparing cellulose hydrogels via ionic liquid-based processes and the applications of regenerated cellulose hydrogels/iongels in electrochemical materials, separation membranes, and 3D printing bioinks. Cellulose is the most abundant natural polymer, which has attracted great attention due to the demand for eco-friendly and sustainable materials. The sustainability of cellulose products also depends on the selection of the dissolution solvent.
View Article and Find Full Text PDFChitosan is a promising naturally derived polysaccharide to be used in hydrogel forms for pharmaceutical and biomedical applications. The multifunctional chitosan-based hydrogels have attractive properties such as the ability to encapsulate, carry, and release the drug, biocompatibility, biodegradability, and non-immunogenicity. In this review, the advanced functions of the chitosan-based hydrogels are summarized, with emphasis on fabrications and resultant properties reported in literature from the recent decade.
View Article and Find Full Text PDFComposite films of natural rubber/cellulose fiber/silver nanoparticle were synthesized in a green route via the latex solution process. Hybrid cellulose filler containing carboxymethyl cellulose and cellulose microfibers was used to facilitate facile and fast preparation and to improve mechanical strength to the composites, respectively. All the composites possessed a high tensile strength of ~120 MPa, a high heat resistance of nearly 300 °C, and more than 20% biodegradability in soil in two weeks.
View Article and Find Full Text PDFChito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation.
View Article and Find Full Text PDFIn Gluconacetobacter xylinus cultivation for bacterial nanocellulose production, agro-industrial wastes, soybean residual okara, okara extracted protein, and modified okara protein, were used as a protein source. In comparison with homogenized raw okara and protein extracted from raw okara, acetic-acid modified protein provided the higher cellulose yield (2.8 g/l at 3 %w/v protein concentration) due to the improved protein solubility in the culture medium (89 %) and smaller particle size (0.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
Natural polymeric nanofibers-based materials for medical application is an intensive research area due to the unique features of natural polymeric nanofibers. Bacterial nanocellulose (BC) films containing various concentrations of mangosteen (Garcinia mangostana) peel extract were prepared and evaluated as a multifunctional nanofiber film. The extract was absorbed into BC hydrogel and air dried to entrap the extract into nanofiber network.
View Article and Find Full Text PDFNatural rubber (NR) reinforced with high loading of microfibrillated cellulose (MFC) was fabricated in the presence of sodium alginate as a thickening and dispersing agent in NR latex. The tensile strength and Young's moduli of the 50% wt. MFC loading-NR composites were 13.
View Article and Find Full Text PDFChitin was extracted from local snow crab shell waste and used as a raw material in the fabrication of porous spherical microgels. The chitin microgels were obtained using a batch process of emulsification and, afterward, gelation. The effects of chitin concentrations, oil and water phase ratios (O:W), surfactants, and gelation on the size distribution and morphology of the microgels were investigated.
View Article and Find Full Text PDFBacterial Cellulose (BC) synthesized by has been a promising candidate for medical applications. Modifying BC to possess the properties needed for specific applications has been reported. In this study, BCs functionalized by organosilanes were hypothesized to improve the attachment and spreading of Normal Human Dermal Fibroblast (NHDF).
View Article and Find Full Text PDFBacterial cellulose (BC) films containing an ethanolic extract of mangosteen peel were prepared and their physical, chemical, and anticancer properties were characterized. The cumulative absorption and release profiles of bioactive compounds in the films were determined based on total phenolic and α-mangostin content. The BC films were filled with total phenolic compounds expressed as gallic acid equivalent varying from 4.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2014
Compressive moduli of bacteria-synthesized cellulose (BC) were altered by two drying techniques: ambient-air drying and freeze drying. While no significant differences in dry weight were found, their cross-sectional structures and thickness varied greatly. Freeze dried BCs had loose cross-sectional structures and a thickness of ~4.
View Article and Find Full Text PDFA nanocellulose-gelatin (bacterial cellulose gelatin (BCG)) film was developed by a supplement of gelatin, at a concentration of 1%-10% w/v, in a coconut-water medium under the static cultivation of . The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures.
View Article and Find Full Text PDF