Publications by authors named "Siriporn Damrongsakkul"

The porous particles prepared from composited calcium-ortho-phosphate (biphasic), Thai silk fibroin, gelatin, and alginate, with an organic to inorganic component ratio of 15.5:84.5, were tested for their abilities to control the release of the commercialized antibiotic solutions, clindamycin phosphate (CDP) and amikacin sulfate (AMK).

View Article and Find Full Text PDF

Gamma irradiation, which is one of the more conventional sterilization methods, was used to induce the hydrogelation of silk fibroin in this study. The physical and chemical characteristics of the irradiation-induced silk fibroin hydrogels were investigated. Silk fibroin solution with a concentration greater than 1 wt% formed hydrogel when irradiated by gamma rays at a dose of 25 or 50 kGy.

View Article and Find Full Text PDF

Triggerable coatings, such as pH-responsive polymethacrylate copolymers, can be used to protect the active pharmaceutical ingredients contained within oral solid dosage forms from the acidic gastric environment and to facilitate drug delivery directly to the intestine. However, gastrointestinal pH can be highly variable, which can reduce delivery efficiency when using pH-responsive drug delivery technologies. We hypothesized that biomaterials susceptible to proteolysis could be used in combination with other triggerable polymers to develop novel enteric coatings.

View Article and Find Full Text PDF

Silk fibroin (SF) scaffolds have widely been used as functional materials for tissue engineering and implantation. For long-term applications, many cross-linking strategies have been developed to enhance the stability and enzymatic degradation of scaffolds. Although the biocompatibility of SF scaffolds has been investigated, less is known about the extent to which the degradation products of these scaffolds affect the host response in the long term after implantation.

View Article and Find Full Text PDF

The tissue engineering triad comprises the combination of cells, scaffolds and biological factors. Therefore, we prepared cell- and drug-loaded hydrogels using in situ silk fibroin (SF) hydrogels induced by dimyristoyl glycerophosphoglycerol (DMPG). DMPG is reported to induce rapid hydrogel formation by SF, facilitating cell encapsulation in the hydrogel matrix while maintaining high cell viability and proliferative capacity.

View Article and Find Full Text PDF

silk fibroin (SF), from Nangnoi Srisaket 1 Thai strain, has shown potential for various biomedical applications such as wound dressing, a vascular patch, bone substitutes, and controlled release systems. The hemocompatibility of this SF is one of the important characteristics that have impacts on such applications. In this study, the hemocompatibility of Thai SF was investigated and its improvement by low molecular weight heparin (LMWH) immobilization was demonstrated.

View Article and Find Full Text PDF

Flexible films were prepared from silk fibroin (SF) and gelatin (GA) with a presence of glycerol (Gly), followed by water vapor annealing to achieve water-insoluble matrices. The blended SF/GA/Gly films were chemically conjugated with tobacco mosaic virus (TMV), either native (TMV-wt) or genetically modified with Arg-Gly-Asp (RGD) sequences (TMV-rgd), to improve cellular responses. The attachment and proliferation of L929 cells on TMV-decorated films were improved, possibly due to enhanced surface roughness.

View Article and Find Full Text PDF

Binary-blended hydrogels fabricated from silk fibroin (SF) and recombinant spider silk protein eADF4(C16) were developed and investigated concerning gelation and cellular interactions in vitro. With an increasing concentration of eADF4(C16), the gelation time of SF was shortened from typically one week to less than 48 h depending on the blending ratio. The biological tests with primary cells and two cell lines revealed that the cells cannot adhere and preferably formed cell aggregates on eADF4(C16) hydrogels, due to the polyanionic properties of eADF4(C16).

View Article and Find Full Text PDF

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1-3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG).

View Article and Find Full Text PDF

Background: A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays.

Methods: Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique.

View Article and Find Full Text PDF

3D porous scaffolds fabricated from binary and ternary blends of silk fibroin (SF), gelatin (G), and hyaluronan (HA) and crosslinked by the carbodiimide coupling reaction were developed. Water-stable scaffolds can be obtained after crosslinking, and the SFG and SFGHA samples were stable in cell culture medium up to 10 days. The presence of HA in the scaffolds with appropriate crosslinking conditions greatly enhanced the swellability.

View Article and Find Full Text PDF

The administration of a drug-loaded implantable hydrogel at the tumor site after surgical resection is a viable approach to prevent the local recurrence or metastasis. Dimyristoyl glycerophosphorylglycerol (DMPG)-based liposomes were developed for inducing the rapid gelation of silk fibroin (SF) and delivering an anticancer drug, curcumin. Curcumin was loaded in the liposomes and the stability of curcumin was enhanced.

View Article and Find Full Text PDF

Accelerating the gelation of silk fibroin (SF) solution from several days or weeks to minutes or few hours is critical for several applications (e.g., cell encapsulation, bio-ink for 3D printing, and injectable controlled release).

View Article and Find Full Text PDF

Silk fibroin (SF) hydrogels can be obtained via self-assembly, but this process takes several days or weeks, being unfeasible to produce cell carrier hydrogels. In this work, a phospholipid, namely, 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DMPG), was used to induce and accelerate the gelation process of SF solutions. Due to the amphipathic nature and negative charge of DMPG, electrostatic and hydrophobic interactions between the phospholipids and SF chains will occur, inducing the structural transition of SF chains to the beta sheet and consequently a rapid gel formation is observed (less than 50 min).

View Article and Find Full Text PDF

The cassava starch processing plays an important role in food industries. During starch processing stage, a large amount of cassava starch waste (CSW) which mainly contains lost starch product and solid residue such as cassava bagasse are produced. Starch and cassava bagasse can be hydrolyzed into fermentable sugar such as glucose.

View Article and Find Full Text PDF

Silk fibroin hydrogel is an interesting natural material in various biomedical applications. However, the self-assembled gelation takes a long time. In this work, different alcohol types are used as gelation enhancers for aqueous silk fibroin solution.

View Article and Find Full Text PDF

The previously developed gelatin/silk fibroin microspheres were loaded with curcumin and applied for anti-inflammatory treatment in monosodium iodoacetate (MIA)-induced osteoarthritis (OA) in a rat model. The MIA-induced OA rats received a single intra-articular injection with gelatin or gelatin/silk fibroin (30/70) microspheres encapsulating curcumin. The therapeutic effects of treatment groups [concentration of interleukin-6 (IL-6) in blood serum, radiographic and the histological grading on articular joint] were compared with those of normal saline treated OA and normal rats.

View Article and Find Full Text PDF

Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae.

View Article and Find Full Text PDF

In this study, polycaprolactone (PCL) film, a high potential material used in biomedical applications, was treated by air plasma prior to a conjugation by carbodiimide cross-linking with various types of proteins, including type A gelatin, type B gelatin, and collagen hydrolysate. The properties of modified PCL films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and atomic force microscopy. The XPS results showed that oxygen and nitrogen atoms were successfully introduced on the air plasma-treated PCL surface.

View Article and Find Full Text PDF

In this study, curcumin and/or docosahexaenoic acid (DHA) were encapsulated in Thai silk fibroin/gelatin (SF/G) sponges, prepared at different blending ratios, aimed to be applied as a controlled release system for localized cancer therapy. The SF/G sponges were fabricated by freeze-drying and glutaraldehyde cross-linking techniques. Physicochemical properties of the SF/G sponges were characterized.

View Article and Find Full Text PDF

In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate.

View Article and Find Full Text PDF

The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media.

View Article and Find Full Text PDF

In this study, the characteristics of silk fibroin films obtained from regenerated aqueous silk fibroin solution of various races were evaluated. Three races based on original sources of silkworms were selected: Nangnoi-Sisaket 1 (NN), Nakhon Ratchasima 1 (K1), and Nakhon Ratchasima 2 (K8). The Tg and Td of silk fibroin films were around 147-156°C and 277-279°C, respectively.

View Article and Find Full Text PDF

The objective of this study was to develop the microspheres from gelatin (G) and silk fibroin (SF) aimed to be applied for the controlled release of curcumin and piperine. The glutaraldehyde-crosslinked G/SF microspheres at various weight blending ratios (100/0, 70/30, 50/50, and 30/70) were successfully fabricated by water in oil emulsion technique. The microspheres prepared from all compositions were in a round shape with homogeneous size distribution both in the dried (194-217 μm) and swollen states (297-367 μm).

View Article and Find Full Text PDF

Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system.

View Article and Find Full Text PDF