In vivo protein synthesis is crucial for all domains of life. It is accomplished through translational machinery, and a key step is the translocation of tRNA-mRNA by elongation factor G (EF-G). Genome-based analysis revealed two EF-G encoding genes (S0885 and S2082) in the freshwater cyanobacterium model Synechococcus elongatus PCC7942.
View Article and Find Full Text PDFTranslation elongation factors (EFs) are proteins that play important roles during the elongation stage of protein synthesis. In prokaryotes, at least four EFs function in repetitive reactions (EF-Tu, EF-Ts, EF-G, and EF-P). EF-P plays a vital role in the specialized translation of consecutive proline amino acid motifs.
View Article and Find Full Text PDFThe terrestrial filamentous cyanobacterium, Nostoc commune, has been used as a food source in many countries, especially countries in Asia. In this study, N. commune-derived aqueous extracts were evaluated with regard to their antioxidative and antiglycative properties.
View Article and Find Full Text PDFThe halotolerant cyanobacterium, sp. PCC 7418, possesses two classes of fructose-1,6-bisphosphate aldolase (FBA): H2846 and H2847. Though class I (CI)-FBA H2846 is thought to be associated with salt tolerance, the regulatory mechanisms, molecular characteristics, and expression profiles between H2846 and class II (CII)-FBA H2847 have scarcely been investigated.
View Article and Find Full Text PDFFructose-1,6-bisphosphate aldolase (FBA) is a key metabolic enzyme, which is involved in glycolysis, gluconeogenesis and the Calvin cycle. The distinct physiological roles of FBAs in various organisms have been reported; however, in cyanobacteria, the functional characterization of FBAs and investigation of the intracellular dynamics of FBAs largely remains unknown. Here, we utilized a two-step chromatographic technique to identify a class I FBA (CI-FBA), which we named H2846.
View Article and Find Full Text PDFThis report provides a broadly applicable and cost-effective method for the purification of mycosporine-like amino acids (MAAs) from cyanobacteria. As MAAs are known to have multiple bioactivities for health and beauty, a universal isolation method of MAAs from biomass is attractive. In particular, the biomass of photosynthetic microorganisms such as cyanobacteria is of interest as a natural source of useful compound production, because of their photoautotrophic property.
View Article and Find Full Text PDF