Anal Chim Acta
May 2024
Background: The incorporation of bimetallic magnetic ionic liquids (MILs) in microextraction methods is an emerging trend due to the improved magnetic susceptibility offered by these solvents, which relies on the presence of metallic components in both the cation and the anion. This feature favors easy magnetic separation of these solvents in analytical sample preparation strategies. However, reported liquid-phase microextraction methods based on bimetallic MILs still present an important drawback in that the MILs are highly viscous, making a dispersive solvent during the microextraction procedure necessary, while also requiring a tedious back-extraction step prior to the chromatographic analysis.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2024
A porous composite magnetic stir bar adsorbent was fabricated for the extraction and enrichment of parabens and bisphenols from selected beverage samples. The adsorbent comprised a metal organic framework, carbon foam decorated zinc oxide and magnetic nanoparticles embedded in polyvinyl alcohol cryogel. The porous composite stir bar adsorbent could adsorb parabens and bisphenols via hydrogen bonding, π-π and hydrophobic interactions.
View Article and Find Full Text PDFA hierarchical porouscomposite magnetic sorbent was fabricated and applied to the dispersive solvent-assisted solid-phase extraction of five polycyclic aromatic hydrocarbons. A sorbent was first prepared by incorporating graphene oxide, calcium carbonate, and magnetite nanoparticles into a polyvinyl alcohol cryogel. The graphene oxide was converted to reduced graphene oxide using ascorbic acid and a hierarchical porous structure was produced by reacting hydrochloric acid with incorporated calcium carbonate to generate carbon dioxide bubbles which created a second network.
View Article and Find Full Text PDFA dumbbell-shaped stir bar adsorbent of MIL-101 entrapped in PVA cryogel coated with poly(3,4-ethylenedioxythiophene) was fabricated to extract synthetic phenolic antioxidants in foodstuffs. The interconnected porous of cryogel allowed the entrapment of MIL-101 and enhanced the surface areas of poly(3,4-ethylenedioxythiophene) coating which facilitated multiple adsorptions. The fabricated adsorbent was characterized and measured the adsorption capacities for synthetic phenolic antioxidants.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2021
A composite adsorbent composed of metallic copper (Cu), polypyrrole (PPy), halloysite nanotubes (HNTs) and magnetite nanoparticles (FeO) was developed to extract and enrich sulfonamides by dispersive magnetic solid phase extraction. The composite could adsorb sulfonamides via hydrogen bonding and hydrophobic, π-π and π-electron-metal interactions. The extraction conditions were optimized and the developed composite adsorbent was characterized and provided a large surface area that enhanced extraction efficiency for sulfonamides.
View Article and Find Full Text PDFA porous composite magnetic sorbent was developed and used as a solid phase for the solvent-assisted preconcentration of organophosphorus pesticides. The hierarchical porous composite sorbent was composed of polypyrrole thin film coated on the surface of porous alginate beads with embedded magnetite nanoparticles. The pores in the alginate hydrogel beads were produced by carbon dioxide bubbles from the reaction of incorporated calcium carbonate with hydrochloric acid.
View Article and Find Full Text PDF