Publications by authors named "Sirintip Dangtip"

COVID-19 has afflicted millions of lives worldwide. Although there are many rapid methods to detect it based on colorimetric loop-mediated isothermal amplification, there remains room for improvement. This study aims to 1) integrate multiple primers into a singleplex assay to enhance the diagnostic sensitivity, and 2) utilize a high-throughput smartphone-operatable AI-driven color reading tool to enable a rapid result analysis.

View Article and Find Full Text PDF

Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in large scale testing.

View Article and Find Full Text PDF

Tilapia is one of the major aquaculture species with a global economic significance. Despite a high scale of production worldwide, mortality in many tilapia cultures has recently become a problem concerned with not only intensive farming but also the prevalence of infectious pathogens. Tilapia lake virus (TiLV) has emerged as a serious single-stranded RNA disease agent that thus far has continued to cause a number of incidences across the continents.

View Article and Find Full Text PDF

Clostridium perfringens is a key anaerobic pathogen causing food poisoning. Definitive detection by standard culture method is time-consuming and labor intensive. Current rapid commercial test kits are prohibitively expensive.

View Article and Find Full Text PDF

Laem-Singh virus (LSNV) is a positive-sense single-stranded RNA (ssRNA) virus that was recently identified in Penaeus monodon shrimp in Thailand displaying signs of slow growth syndrome. A total of 326 shrimp collected between 1998 and 2007 from countries in the Indo-Pacific region were tested by RT-PCR for evidence of LSNV infection. The samples comprised batches of whole postlarvae, and lymphoid organ, gill, muscle or pleopod tissue of juvenile, subadult and adult shrimp.

View Article and Find Full Text PDF

Chimeric reporter genes were generated comprising nine different promoters of the white spot syndrome virus linked to luciferase, with the aim to compare their transcriptional activities in insect cells. The promoters included the four non-structural genes DNA polymerase, ribonucleotide reductase small subunit, ribonucleotide reductase large subunit, and thymidine-thymidylate kinase, and the five structural genes VP15, VP19, VP24, VP26, and VP28. The promoters of the non-structural but not the structural genes can function in these cells, indicating that transcription of the non-structural genes can be recognized by cellular transcriptional machineries.

View Article and Find Full Text PDF

Yellow head virus (YHV) is a pathogen of the black tiger shrimp (Penaeus monodon) and, with gill-associated virus (GAV), is one of two known invertebrate nidoviruses. We describe sequences of the large replicase gene (ORF1a) and 5'- and 3'-terminal UTRs, completing the 26,662 nt sequence of the YHV genome. ORF1a (12,219 nt) encodes a approximately 462,662 Da polypeptide containing a putative 3C-like protease and a putative papain-like protease with the canonical C/H catalytic dyad and alpha+beta fold.

View Article and Find Full Text PDF