Introduction: The odor identification test is an efficient and rapid way to assess and screen a patient's sense of smell. The original Sniffin' Sticks odor identification test (SST) consisted of 16 smells developed for a European population. However, this identification test can be influenced by cultural differences, such as variations in food culture, ethnicity and language.
View Article and Find Full Text PDFYerba mate tea (YMT) has a chemopreventive role in a variety of inflammatory diseases. The objective was to determine the capability of YMT and mate saponins to prevent azoxymethane (AOM)-induced colonic inflammation in rats. YMT (2% dry leaves, w/v, as a source of drinking fluid) (n = 15) and mate saponins (0.
View Article and Find Full Text PDFScope: The biological functions of caffeoylquinic acid (CQA) derivatives from various plant sources have been partially elucidated. The objectives were to isolate and purify diCQAs from Yerba mate tea leaves and assess their anti-inflammatory and anti-cancer capabilities in vitro and explore their mechanism of action.
Methods And Results: Methanol extracts of dried mate leaves were resolved by flash chromatography and further purified resulting in two fractions one containing 3,4- and 3,5-diCQAs and the other 4,5-diCQA with NMR-confirmed structures.
Yerba mate tea ( Ilex paraguariensis ) is growing in popularity around the world. The objective of this study was to investigate the potential anti-inflammatory effect of yerba mate tea (MT) extracts as well as some of its phytochemicals and their interactions. MT and decaffeinated MT extracts [1-300 microM chlorogenic acid (CHA) equiv]; CHA, caffeine from MT (matein), and mate saponins (1-300 microM); quercetin (1-200 microM); and ursolic and oleanolic acids (1-100 microM) were tested by measuring their ability to inhibit COX-2/PGE(2) and iNOS/NO pathways in LPS-induced RAW 264.
View Article and Find Full Text PDFTea is one of the most widely consumed beverages worldwide. Several studies have suggested that catechins and theaflavins found in tea may reduce the risk of various types of cancers. Major advances have been made to understand the molecular events leading to cancer prevention; however, the evidence is not conclusive.
View Article and Find Full Text PDF