Publications by authors named "Siqingaowa Caidengbate"

A microRNA miR-200c-3p is a regulator of epithelial-mesenchymal transition to control adhesion and migration of epithelial and mesenchymal cells. However, little is known about whether miR-200c-3p affects lymphocyte adhesion and migration mediated by integrins. Using TK-1 (a T lymphoblast cell) as a model of T cell, here we show that repressed expression of miR-200c-3p upregulated α4 integrin-mediated adhesion to and migration across mucosal addressin cell adhesion molecule-1 (MAdCAM-1).

View Article and Find Full Text PDF

Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored.

View Article and Find Full Text PDF

The spike glycoprotein attached to the envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl-glycyl-aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental evidence that the β1 integrins predominantly expressed on human pulmonary epithelial cell lines and primary mouse alveolar epithelial cells bind to this spike protein.

View Article and Find Full Text PDF

Thrombomodulin is a molecule with anti-coagulant and anti-inflammatory properties. Recently, thrombomodulin was reported to be able to bind extracellular matrix proteins, such as fibronectin and collagen; however, whether thrombomodulin regulates the binding of human breast cancer-derived cell lines to the extracellular matrix remains unknown. To investigate this, we created an extracellular domain of thrombomodulin, TMD123-Fc, or domain deletion TM-Fc proteins (TM domain 12-Fc, TM domain 23-Fc) and examined their bindings to fibronectin in vitro by ELISA.

View Article and Find Full Text PDF