Publications by authors named "Sipma H"

We present a laser plasma based x-ray microscope for the water window employing a high-average power laser system for plasma generation. At 90 W laser power a brightness of 7.4 x 10(11) photons/(s x sr x μm(2)) was measured for the nitrogen Lyα line emission at 2.

View Article and Find Full Text PDF

Three different genes encode the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), an intracellular Ca2+ channel involved in cellular Ca2+ signaling. The IP3-binding characteristics of the various IP3R isoforms differ, but until now no specific activators or inhibitors of IP3 binding have been described. We compared the effects of oxidizing reagents, in particular thimerosal, and of cyclic ADP-ribose (cADPR) on IP3 binding to the various IP3R isoforms.

View Article and Find Full Text PDF

We have expressed the N-terminal 581 amino acids of type 1 myo-inositol 1,4,5-trisphosphate receptor (IP(3)R1), IP(3)R2 and IP(3)R3 as recombinant proteins [ligand-binding site 1 (lbs-1), lbs-2, lbs-3] in the soluble fraction of Escherichia coli. These recombinant proteins contain the complete IP(3)-binding domain and bound IP(3) and adenophostin A with high affinity. Ca(2+) and calmodulin were previously found to maximally inhibit IP(3) binding to lbs-1 by 42+/-6 and 43+/-6% respectively, and with an IC(50) of approx.

View Article and Find Full Text PDF

The binding of inositol 1,4,5-trisphosphate (IP3) to the IP3 receptor (IP3R) is modulated by various compounds. Until now, limited progress has been made concerning the isoform-specific effects of these modulators. In this study, we examined how [3H]IP3 binding to the three IP3R isoforms is modulated by cyclic ADP-ribose (cADPR) and by the SH-reagent thimerosal.

View Article and Find Full Text PDF

Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.

View Article and Find Full Text PDF

A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1.

View Article and Find Full Text PDF

There is still no agreement on the mechanism of the intracellular action of low concentrations of inositol 1,4,5-trisphosphate (IP3). Intracellular Ca2+ stores may transiently release some Ca2+ before they become insensitive to IP3. Alternatively, stores with a low IP3 threshold may lose all their Ca2+ and the others none.

View Article and Find Full Text PDF

Prolonged stimulation of rat A7r5 aortic smooth muscle cells with 3 microM vasopressin, or of hamster DDT1 MF-2 smooth muscle cells with 10 microM bradykinin or 100 microM histamine led within 4 h to a 40-50% down-regulation of the type 1 InsP3 receptor (InsP3R-1) and of the type 3 InsP3 receptor (InsP3R-3). InsP3R down-regulation was a cell- and agonist-specific process, since several other agonists acting on PLC-coupled receptors did not change the expression level of the InsP3R isoforms in these cell types and since no agonist-induced down-regulation of InsP3Rs was observed in HeLa cells. Down-regulation of InsP3Rs was prevented by an inhibitor of proteasomal protease activity, N-acetyl-Leu-Leu-norleucinal (ALLN).

View Article and Find Full Text PDF

Ca2+ release from intracellular stores occurs via two families of intracellular channels, each with their own specific agonist: Ins(1, 4,5)P3 for the Ins(1,4,5)P3 receptor and cyclic ADP-ribose (cADPR) for the ryanodine receptor. We now report that cADPR inhibited Ins(1, 4,5)P3-induced Ca2+ release in permeabilized A7r5 cells with an IC50 of 20 microM, and in permeabilized 16HBE14o- bronchial mucosal cells with an IC50 of 35 microM. This inhibition was accompanied by an increase in specific [3H]Ins(1,4,5)P3 binding.

View Article and Find Full Text PDF

Structural and functional analyses were used to investigate the regulation of the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) by Ca2+. To define the structural determinants for Ca2+ binding, cDNAs encoding GST fusion proteins that covered the complete linear cytosolic sequence of the InsP3R-1 were expressed in bacteria. The fusion proteins were screened for Ca2+ and ruthenium red binding through the use of 45Ca2+ and ruthenium red overlay procedures.

View Article and Find Full Text PDF

The non-mitochondrial Ca2+ stores in permeabilized A7r5 cells responded to a decrease in Mg-ATP concentration with a pronounced Ca2+ release if 20 microM CoA was present. This release was rather specific for the preincubation or removal of ATP. ATP gamma S was much less effective and AMP-PNP, GTP, ITP, CTP, UTP, ADP, AMP, adenosine and adenine had no effect.

View Article and Find Full Text PDF

The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1, 4,5)P3 receptor. It was observed that 3'-phosphoadenosine 5'-phosphoulphate, CoA, di(adenosine-5')tetraphosphate (Ap4A) and di(adenosine-5')pentaphosphate (Ap5A) were more effective than ATP.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores is generally assumed to be a 'quantal' process because low InsP3 concentrations mobilize less Ca2+ than high concentrations and a submaximal concentration does not release all the InsP3-mobilizable Ca2+. However, some recent reports questioned the generally accepted view that a low dose of InsP3 is unable to empty the whole store. We have now challenged the stores of permeabilized A7r5 cells in InsP3 for much longer periods than previously reported, to assess directly whether the slow phase of the release would empty the whole store (a non-quantal response) or only a fraction of it (a quantal response).

View Article and Find Full Text PDF

To study the Ca2+ regulation of the inositol 1,4,5-trisphosphate receptor (InsP3R) at the molecular level, we expressed various cytosolic and luminal regions of the mouse type I InsP3R as glutathione S-transferase fusion proteins. 45Ca2+ and ruthenium red overlay studies and Stains-all spectra and staining revealed both a cytosolic and a luminal Ca2+ binding site. The luminal Ca2+ binding site was mapped to the nonconserved acidic subregion of the luminal loop between amino acids 2463 and 2528.

View Article and Find Full Text PDF

1. The effects of the specific protein kinase C (PKC) inhibitor, GF109203X, were measured on the cytoplasmic Ca2+ concentration ([Ca2+]i), and on histamine H1 receptor- and thapsigargin-mediated increases in [Ca2+]i in DDT1 MF-2 smooth muscle cells. 2.

View Article and Find Full Text PDF

Adenosine A1 receptor mediated formation of inosito 1,4,5-trisphosphate (Ins(1,4,5)P3) and accumulation of cytoplasmic Ca2+ ([Ca2+]i) were investigated in DDT1 MF-2 smooth muscle cells. A strong reduction of the adenosine and N6-cyclopentyladenosine (CPA) induced rise in [Ca2+]i was observed after blocking Ca2+ entry across the plasma membrane with LaCl3. This effect of LaCl3 was not observed in the absence of extracellular Ca2+; it was not caused by reduced Ins(1,4,5)P3 formation or changed Ins(1,4,5)P3 induced Ca2+ release, or influenced by temperature.

View Article and Find Full Text PDF

The histamine H1 receptor mediated increase in cytoplasmic Ca2+ ([Ca2+]i) was measured in the presence of the known phospholipase C (PLC) inhibitor, neomycin. Neomycin (1 mM) inhibited the histamine (100 microM) induced rise in [Ca2+]i to the same extent as observed after blocking Ca2+ entry with LaCl3. Likewise, the increase in [Ca2+]i after re-addition of CaCl2 (2 mM) to extracellular Ca2+ deprived and histamine pretreated cells was strongly reduced by neomycin.

View Article and Find Full Text PDF

1. Bradykinin caused a transient reduction of about 25% in the cyclic AMP level in forskolin prestimulated DDT1 MF-2 smooth muscle cells (IC50: 36.4 +/- 4.

View Article and Find Full Text PDF

Receptor-activated formation of inositol phosphates results in mobilization of intracellular stored Ca2+ in a variety of cells, including vas deferens derived DDT1 MF-2 cells. Stimulation of the histamine H1 receptor on these cells caused a pronounced formation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) with respect to that of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). In this study, the role of inositol phosphates, in particular Ins(1,3,4,5)P4 on the internal Ca(2+)-releasing process was investigated in permeabilized and histamine-stimulated intact DDT1 MF-2 cells.

View Article and Find Full Text PDF

1. Stimulation of P2U-purinoceptors with UTP or histamine H1-receptors with histamine gave rise to the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) in DDT1 MF-2 smooth muscle cells. 2.

View Article and Find Full Text PDF

The P2U purinoceptor mediated effect on cellular cAMP was investigated in DDT1 MF-2 smooth muscle cells. Stimulation of these receptors by ATP or UTP caused a pronounced decrease of about 50% in cellular cAMP levels in forskolin or isoprenaline pretreated cells. This action of the nucleotides was concentration dependent with an IC50 of 9.

View Article and Find Full Text PDF