The use of linear PEGs for protein precipitation raises the issues of high viscosity and limited selectivity. This paper explores PEG branching as a way to alleviate the first problem, by using 3-arm star as the model branched structure. 3-arm star PEGs of 4,000 to 9,000 Da were synthesized and characterized.
View Article and Find Full Text PDFPEGs for protein precipitation are usually classified by molecular weight. The higher molecular weight precipitants are more efficient but result in higher viscosity. Following empirical evidence that the precipitation efficiency is more comprehensively characterized by PEG hydrodynamic radius (r(h,PEG)) than molecular weight, this paper proposes a model to explicate the significance of r(h,PEG).
View Article and Find Full Text PDFThere are many advantages to the use of protein-free media for biologics production, including a reduced risk of viral contamination from animal-derived proteins and simplification of downstream purification. In the course of developing protein-free media for hybridoma and myeloma cells, zinc was found to be an effective replacement for insulin, with no negative impact on viable cell density and antibody production. Transcript profiling using DNA microarrays indicated no major change in the global expression profile between the insulin and zinc-supplemented cultures, which is consistent with their similar growth and metabolic characteristics.
View Article and Find Full Text PDF