Publications by authors named "Siou-Mei Pan"

The poor prognosis of hepatocellular carcinoma (HCC) is resulted from tumor metastasis. Signaling pathways triggered by deregulated receptor tyrosine kinases (RTKs) were the promising therapeutic targets for prevention of HCC progression. However, RTK-based target therapy using conventional kinase-based inhibitors was often hampered by resistances due to compensatory RTKs signaling.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) and its receptor c-Met were frequently deregulated in hepatocellular carcinoma (HCC). Signaling pathways activated by HGF-c-Met are promising targets for preventing HCC progression. HGF can induce the reactive oxygen species (ROS) signaling for cell adhesion, migration and invasion of tumors including HCC.

View Article and Find Full Text PDF

One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) induced c-Met signaling play critical roles in the progression of hepatocellular carcinoma (HCC). However, c-Met targeting approaches suffered resistance and side effect, thus identification of more suitable downstream targets is needed. Recently, we demonstrated HGF-induced fluctuant ERK/paxillin signaling within 24h.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration.

View Article and Find Full Text PDF

The poor prognosis and recurrence of HCC are majorly caused by intrahepatic metastasis. Delineating the molecular pathways mediating these processes may benefit developing effective targeting therapies. Using human hepatoma HepG2 as a model, we have found reactive oxygen species (ROS) may cooperate with protein kinase C (PKC) for sustained ERK phosphorylation and migration of HepG2 induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA).

View Article and Find Full Text PDF