Publications by authors named "Sion L Williams"

Article Synopsis
  • Wastewater can help scientists understand public health by showing how germs and viruses are present in communities over time and space.
  • Researchers studied wastewater in Miami Dade County from 2020 to 2022 to track different viruses and bacteria, linking them to COVID-19 cases in hospitals and universities.
  • They found harmful germs and bacteria in the water, showing connections between wastewater, human health, and the use of antibiotics, which can help improve public health decisions in the future.
View Article and Find Full Text PDF
Article Synopsis
  • - Wastewater-based epidemiology (WBE) is used to monitor COVID-19 infections by detecting SARS-CoV-2 RNA in wastewater, with the effectiveness possibly changing due to virus mutations over time.
  • - This study examined wastewater samples from the University of Miami and Miami-Dade County across different COVID-19 variant periods, comparing RNA levels to clinical COVID-19 cases and hospitalizations.
  • - While correlations were generally strong, they varied by variant; the Omicron period showed a steeper relationship between wastewater RNA levels and case numbers, while the Initial wave had the strongest correlation for hospitalizations.
View Article and Find Full Text PDF

Clinical testing has been a vital part of the response to and suppression of the COVID-19 pandemic; however, testing imposes significant burdens on a population. College students had to contend with clinical testing while simultaneously dealing with health risks and the academic pressures brought on by quarantines, changes to virtual platforms, and other disruptions to daily life. The objective of this study was to analyze whether wastewater surveillance can be used to decrease the intensity of clinical testing while maintaining reliable measurements of diseases incidence on campus.

View Article and Find Full Text PDF

Wastewater-based surveillance (WBS) is a noninvasive, epidemiological strategy for assessing the spread of COVID-19 in communities. This strategy was based upon wastewater RNA measurements of the viral target, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The utility of WBS for assessing the spread of COVID-19 has motivated research to measure targets beyond SARS-CoV-2, including pathogens containing DNA.

View Article and Find Full Text PDF

Methods of wastewater concentration (electronegative filtration (ENF) versus magnetic bead-based concentration (MBC)) were compared for the analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), beta-2 microglobulin, and human-coronavirus OC43. Using ENF as the concentration method, two quantitative Polymerase Chain Reaction (qPCR) analytical methods were also compared: Volcano 2 Generation (V2G)-qPCR and reverse transcriptase (RT)-qPCR measuring three different targets of the virus responsible for the COVID-19 illness (N1, modified N3, and ORF1ab). Correlations between concentration methods were strong and statistically significant for SARS-CoV-2 (r=0.

View Article and Find Full Text PDF

Wastewater, which contains everything from pathogens to pollutants, is a geospatially-and temporally-linked microbial fingerprint of a given population. As a result, it can be leveraged for monitoring multiple dimensions of public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (n=1,419 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County from 2020-2022.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), β-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant.

View Article and Find Full Text PDF

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to assess the consistency of NanoString nCounter™ technology in measuring microRNA levels in plasma and cystic fluid from patients with pancreatic lesions across multiple sites.
  • - Researchers examined various factors that might affect reproducibility, such as RNA isolation and sample processing, and found high correlation for positive controls and consistent results for housekeeping and spike-in genes.
  • - The results indicate that the nCounter platform provides reliable outcomes for measuring miRNA abundance, highlighting the importance of quality control in multi-center studies.
View Article and Find Full Text PDF

Importance: Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples. Analysis of these samples can be employed for noninvasive surveillance of infectious diseases.

Objective: To evaluate the efficacy of environmental surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for predicting COVID-19 cases in a college dormitory.

View Article and Find Full Text PDF

Background: Malignant gliomas are the most common primary adult brain tumors, with a poor prognosis and ill-defined etiology. Mitochondrial DNA (mtDNA) sequence variation has been linked with certain cancers; however, research on glioma is lacking.

Methods: We examined the association of common (minor allele frequency ≥ 5%) germline mtDNA variants and haplogroups with glioma risk in 1,566 glioma cases and 1,017 controls from a US case-control study, and 425 glioma cases and 1,534 matched controls from the UK Biobank cohort (UKB).

View Article and Find Full Text PDF

Background: Risk factors for meningioma include female gender, African American race, high body mass index (BMI), and exposure to ionizing radiation. Although genome-wide association studies (GWAS) have identified two nuclear genome risk loci for meningioma (rs12770228 and rs2686876), the relation between mitochondrial DNA (mtDNA) sequence variants and meningioma is unknown.

Methods: We examined the association of 42 common germline mtDNA variants (minor allele frequency ≥ 5%), haplogroups, and genes with meningioma in 1080 controls and 478 meningioma cases from a case-control study conducted at medical centers in the southeastern United States.

View Article and Find Full Text PDF

HIV eradication is hindered by the existence of latent HIV reservoirs in CD4 T cells. Therapeutic strategies targeting latent cells are required to achieve a functional cure, however the study of latently infected cells from HIV infected persons is extremely challenging due to the lack of biomarkers that uniquely characterize them. In this study, the dual reporter virus HIV was used to investigate latency establishment and maintenance in lymphoid-derived CD4 T cells.

View Article and Find Full Text PDF

Standardized protocols for wastewater-based surveillance (WBS) for the RNA of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, are being developed and refined worldwide for early detection of disease outbreaks. We report here on lessons learned from establishing a WBS program for SARS-CoV-2 integrated with a human surveillance program for COVID-19. We have established WBS at three campuses of a university, including student residential dormitories and a hospital that treats COVID-19 patients.

View Article and Find Full Text PDF

Introduction: HIV infection causes pathological changes in the natural killer (NK) cell compartment that can be only partially restored by antiretroviral therapy (ART). We investigated NK cells phenotype and function in children with perinatally acquired HIV (PHIV) and long-term viral control (five years) due to effective ART in a multicentre cross-sectional European study (CARMA, EPIICAL consortium). The impact of age at ART start and viral reservoir was also evaluated.

View Article and Find Full Text PDF

Early initiation of antiretroviral therapy (ART) in vertically HIV-infected children limits the size of the virus reservoir, but whether the time of treatment initiation (TI) can durably impact host immune responses associated with HIV infection is still unknown. This study was conducted in PBMC of 20 HIV-infected virally suppressed children on ART (mean age 9.4 y), classified as early treated (ET; age at ART initiation ≤0.

View Article and Find Full Text PDF

Background: Melanoma is a heterogeneous tumour, but the impact of this heterogeneity upon therapeutic response is not well understood.

Methods: Single cell mRNA analysis was used to define the transcriptional heterogeneity of melanoma and its dynamic response to BRAF inhibitor therapy and treatment holidays. Discrete transcriptional states were defined in cell lines and melanoma patient specimens that predicted initial sensitivity to BRAF inhibition and the potential for effective re-challenge following resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a serious brain tumor that mainly affects adults, and patients typically live around 14 months after diagnosis.
  • Scientists have created a new tool called SynergySeq to find the best combinations of existing drugs to treat GBM, using genetic data to help them.
  • By looking at how genes behave in GBM patients and combining this with drug information, researchers hope to discover new ways to help treat this tough disease in the future.
View Article and Find Full Text PDF

Mutations in the mitochondrial DNA (mtDNA) are responsible for several metabolic disorders, commonly involving muscle and the central nervous system. Because of the critical role of mtDNA in oxidative phosphorylation, the majority of pathogenic mtDNA mutations are heteroplasmic, co-existing with wild-type molecules. Using a mouse model with a heteroplasmic mtDNA mutation, we tested whether mitochondrial-targeted TALENs (mitoTALENs) could reduce the mutant mtDNA load in muscle and heart.

View Article and Find Full Text PDF

Pathogenic mitochondrial DNA (mtDNA) mutations often co-exist with wild-type molecules (mtDNA heteroplasmy). Phenotypes manifest when the percentage of mutant mtDNA is high (70-90%). Previously, our laboratory showed that mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) can eliminate mutant mtDNA from heteroplasmic cells.

View Article and Find Full Text PDF

Mutations in the mitochondrial inner membrane ATPase result in neurological syndromes in humans. In mice, the ubiquitous disruption of (also known as ) was embryonic lethal, but a skeletal muscle-specific conditional knockout (KO) was viable. At birth, ATAD3 muscle KO mice had normal weight, but from 2 months onwards they showed progressive motor-impaired coordination and weakness.

View Article and Find Full Text PDF

We observed that the transient induction of mtDNA double strand breaks (DSBs) in cultured cells led to activation of cell cycle arrest proteins (p21/p53 pathway) and decreased cell growth, mediated through reactive oxygen species (ROS). To investigate this process in vivo we developed a mouse model where we could transiently induce mtDNA DSBs ubiquitously. This transient mtDNA damage in mice caused an accelerated aging phenotype, preferentially affecting proliferating tissues.

View Article and Find Full Text PDF

We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNA(Lys) gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.

View Article and Find Full Text PDF

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA.

View Article and Find Full Text PDF