Publications by authors named "Siobhan Kirk"

Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

In addition to its established lactational roles, prolactin acts on multiple target tissues and its circulating levels are responsive to a range of physiological stimuli. The present study used immunohistochemistry to demonstrate that systemic administration of prolactin activates target cells in the arcuate nucleus and median eminence of the male mouse. Prolactin receptor stimulation results in the phosphorylation and thus activation of the signal transducer and activator of transcription (STAT)5 pathway.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the deterioration of motor neurons. However, this complex disease extends beyond the boundaries of the central nervous system, with metabolic alterations being observed at the systemic and cellular level. While the number of studies that assess the role and impact of metabolic perturbations in ALS is rapidly increasing, the use of metabolism biomarkers in ALS remains largely underinvestigated.

View Article and Find Full Text PDF

Tuberoinfundibular dopamine (TIDA) neurons are the central regulators of prolactin (PRL) secretion. Their extensive functional plasticity allows a change from low PRL secretion in the non-pregnant state to the condition of hyperprolactinemia that characterizes lactation. To allow this rise in PRL, TIDA neurons are thought to become unresponsive to PRL at lactation and functionally silenced.

View Article and Find Full Text PDF