Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function.
View Article and Find Full Text PDFHippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia.
View Article and Find Full Text PDFHippocampal granule cells transmit information about behaviorally-relevant stimuli to CA3 pyramidal cells via mossy fiber synapses. These synapses express a form of long-term potentiation (mfLTP) that is non-Hebbian and does not require NMDA receptors. mfLTP is thought to be induced and expressed presynaptically, hence, the major determinant of whether mfLTP occurs is activity in the granule cells.
View Article and Find Full Text PDF