Publications by authors named "Siobhan A O'Leary"

Human articular chondrocytes (hACs) are scarce and lose their chondrogenic potential during monolayer passaging, impeding their therapeutic use. This study investigated (a) the translatability of conservative chondrogenic passaging and aggregate rejuvenation on restoring chondrogenic properties of hACs passaged up to P9; and (b) the efficacy of a combined treatment of transforming growth factor-beta 1 (TGF-1) (T), chondroitinase-ABC (C), and lysyl oxidase-like 2 (L), collectively termed TCL, on engineering functional human neocartilage via the self-assembling process, as a function of passage number up to P11. Here, we show that aggregate rejuvenation enhanced glycosaminoglycan (GAG) content and type II collagen staining at all passages and yielded human neocartilage with chondrogenic phenotype present up to P7.

View Article and Find Full Text PDF

Strategies to overcome the limited availability of human articular chondrocytes and their tendency to dedifferentiate during expansion are required to advance their clinical use and to engineer functional cartilage on par with native articular cartilage. This work sought to determine whether a biochemical factor (transforming growth factor-β1 [T]), a biophysical agent (chondroitinase-ABC [C]), and a collagen crosslinking enzyme (lysyl oxidase-like 2 [L]) are efficacious in forming three-dimensional human neocartilage from expanded human articular chondrocytes. Among the treatment regimens, the combination of the three stimuli (TCL treatment) led to the most robust glycosaminoglycan content, total collagen content, and type II collagen production.

View Article and Find Full Text PDF

The zygapophysial joint, a diarthrodial joint commonly referred to as the facet joint, plays a pivotal role in back pain, a condition that has been a leading cause of global disability since 1990. Along with the intervertebral disc, the facet joint supports spinal motion and aids in spinal stability. Highly susceptible to early development of osteoarthritis, the facet is responsible for a significant amount of pain in the low-back, mid-back, and neck regions.

View Article and Find Full Text PDF

Unlabelled: The facet joint, a synovial joint located on the posterior-lateral spine, is highly susceptible to degenerative changes and plays a significant role in back-related morbidities. Despite its significance, the facet is rarely studied and thus current treatment strategies are lacking. This study aimed to characterize, for the first time, the properties of human, pig, monkey, and rabbit lumbar facet cartilage providing much-needed design criteria for tissue engineering approaches.

View Article and Find Full Text PDF

Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure.

View Article and Find Full Text PDF

Rupture of the abdominal aortic aneurysm (AAA) occurs when the local wall stress exceeds the local wall strength. Knowledge of AAA wall mechanics plays a fundamental role in the development and advancement of AAA rupture risk assessment tools. Therefore, the aim of this study is to evaluate the biaxial mechanical properties of AAA tissue.

View Article and Find Full Text PDF

Background: Preservation of the native artery׳s functionality can be important in both clinical and experimental applications. Although, simple cryopreservation techniques offer an attractive solution to this problem, the extent to which freezing affects the tissue׳s properties is widely debated. Earlier assessments of the mechanical properties post-freezing have been limited by one or more of the following: small sample numbers, uncontrolled inter-specimen/animal variability, failure to account for the impact of potential errors in thickness measurements, short storage times and uniaxial test methods.

View Article and Find Full Text PDF

Intraluminal thrombus (ILT) is present in 75% of clinically-relevant abdominal aortic aneurysms (AAAs) yet, despite much research effort, its role in AAA biomechanics remains unclear. The aim of this work is to further evaluate the biomechanics of ILT and determine if different ILT morphologies have varying mechanical properties. Biaxial mechanical tests were performed on ILT samples harvested from 19 patients undergoing open surgical repair.

View Article and Find Full Text PDF

Measuring the physical dimensions of soft tissue is difficult due to its deformable nature. Such measurements are used to evaluate the tissue's mechanical properties. Imprecise measurements of the tissue's thickness can alter the assessment of tensile stress which may have significant clinical relevance when used as a diagnostic tool.

View Article and Find Full Text PDF