Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a rare lysosomal disease caused by congenital enzymatic deficiencies in heparan sulfate (HS) degradation, leading to organ dysfunction. The most severe hallmark of MPS III comprises neurological alterations, although gastrointestinal symptoms (GISs) have also been shown to be relevant in many patients. Here, we explored the contribution of the gut microbiota to MPS III GISs.
View Article and Find Full Text PDFThis was a retrospective, multicenter study that aimed to report the characteristics of type 3 Gaucher disease (GD3) patients in Spain, including the genotype, phenotype, therapeutic options, and treatment responses. A total of 19 patients with GD3 from 10 Spanish hospitals were enrolled in the study (14 men, 5 women). The median age at disease onset and diagnosis was 1 and 1.
View Article and Find Full Text PDFEmergencias
February 2023
Objectives: We present the results of our experience in the diagnosis and follow up of the positive cases for propionic, methylmalonic acidemias and cobalamin deficiencies (PA/MMA/MMAHC) since the Expanded Newborn Screening was implemented in Madrid Region.
Methods: Dried blood samples were collected 48 h after birth. Amino acids and acylcarnitines were quantitated by MS/MS.
The determination of acylcarnitines (AC) in dried blood spots (DBS) by tandem mass spectrometry in newborn screening (NBS) programs has enabled medium-chain acyl-coA dehydrogenase deficiency (MCADD) to be identified in presymptomatic newborns. Nevertheless, different confirmatory tests must be performed to confirm the diagnosis. In this work, we have collected and analyzed the NBS results and confirmatory test results (plasma AC, molecular findings, and lymphocyte MCAD activity) of forty individuals, correlating them with clinical outcomes and treatment, with the aim of obtaining useful diagnostic information that could be applied in the follow-up of the patients.
View Article and Find Full Text PDFEndocrinol Diabetes Nutr (Engl Ed)
December 2021
Background: Propionic acidemia (PA), an inborn error of metabolism, is caused by a deficiency in propionyl-CoA carboxylase. Patients have to follow a diet restricted in the propiogenic amino acids isoleucine (Ile), valine (Val), methionine (Met) and threonine (Thr); proper adherence can prevent and treat acute decompensation and increase life expectancy. However, chronic complications occur in several organs even though metabolic control may be largely maintained.
View Article and Find Full Text PDFBackground: Propionic acidemia (PA) is an inherited disorder caused by deficiency of propionyl CoA carboxylase. Most patients with this disorder are diagnosed during the neonatal period because of severe metabolic acidosis and hyperammonemia. Patients are required to undergo blood and urine analysis at least 3 to 4 times per year, depending on age and metabolic control.
View Article and Find Full Text PDFCongenital lactic acidosis (CLA) is a rare condition in most instances due to a range of inborn errors of metabolism that result in defective mitochondrial function. Even though the implementation of next generation sequencing has been rapid, the diagnosis rate for this highly heterogeneous allelic condition remains low. The present work reports our group's experience of using a clinical/biochemical analysis system in conjunction with genetic findings that facilitates the taking of timely clinical decisions with minimum need for invasive procedures.
View Article and Find Full Text PDF