In this study, five adsorption isotherm models, that is, the Langmuir, Freundlich, Langmuir-Freundlich, Temkin and Brunauer-Emmett-Teller isotherms, were utilized for the analysis of the experimental adsorption data for six classes of poly(N-isopropylacrylamide)-based thermo-responsive copolymer-grafted Sepharose Fast Flow sorbents of different copolymer compositions with two structurally related proteins, namely bovine holo-lactoferrin and bovine holo-transferrin at 20 and 50°C. The experimental data for bovine holo-lactoferrin could be mathematically fitted to the Freundlich and Temkin isotherms when the protein feed concentrations were in the range of 1-40 mg/mL at both 20 and 50°C. Similar analysis of the binding of the homologous protein, bovine holo-transferrin, to the same thermo-responsive copolymer-grafted sorbents revealed that the experimental data could be fitted to the Langmuir, Freundlich and Temkin isotherms with coefficients of determination value over 0.
View Article and Find Full Text PDFThe batch adsorption behavior of a humanized monoclonal antibody (hIgG2 mAb) with thermoresponsive polymer (TRP)-modified Sepharose Fast Flow sorbents with different compositions of grafted copolymers is described. At high protein loadings, the adsorption with negatively charged copolymer-modified sorbents exhibited S-shaped isotherms in most cases, indicative of unrestricted multilayer adsorption. The adsorption capacity of the negatively charged copolymer-modified sorbents increased with an increase in the applied environmental temperature due to increased protein-sorbent surface hydrophobic and electrostatic interactions.
View Article and Find Full Text PDFThis study has examined the batch binding behaviour of different thermo-responsive co-polymer grafted chromatographic materials under different temperature and protein loading conditions. The effect of molecular composition of poly(N-isopropylacrylamide) (PNIPAAm)-based co-polymers on the phase transition properties has been documented. Sixteen co-polymers of different compositions were synthesized by free radical polymerization methods.
View Article and Find Full Text PDFCurr Opin Biotechnol
October 2018
Stimuli-responsive polymeric (SRP) materials undergo changes in their physical morphologies and chemical properties in response to small changes in their external environment, such as temperature, pH or light. When immobilised, SRP materials, fabricated in various formats and compositions, provide new opportunities for the separation of products generated by the biotechnology industry. This Current Opinion highlights the potential of these functional materials for the capture, purification and analysis of these products via batch capture methods, column chromatography or electrophoresis, drawing on break-through developments achieved particularly over the last five years.
View Article and Find Full Text PDFAn experimental protocol has been developed for synthesizing stable core-shell microcapsules using a biopolymer, chitosan, lacking cross-linkable thiol functional groups. In the first step, thiol moieties were introduced into the backbone of chitosan using dl-N-acetylhomocysteine thiolactone (AHT). In the second step, AHT-modified chitosan shelled microcapsules, encapsulating an oil core, were successfully prepared using high intensity 20 kHz ultrasound.
View Article and Find Full Text PDF