Methicillin-resistant (MRSA), a major cause of fatalities due to Antimicrobial Resistance (AMR), can act as an opportunistic pathogen despite being part of the normal human flora. MRSA infections, such as skin infections, pneumonia, sepsis, and surgical site infections, have risen significantly, with bloodstream infection cases increasing from 21% in 2016 to 35% in 2020. This surge has prompted research into alternative treatments like nanomaterials, photodynamic therapy, antimicrobial peptides (AMPs), and essential oils (EOs).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2024
The rise of multi-drug resistant (MDR) bacteria, especially strains of Staphylococcus aureus like Vancomycin-resistant S. aureus (VRSA), Vancomycin-intermediate S. aureus (VISA), and Vancomycin-susceptible S.
View Article and Find Full Text PDFRemdesivir, a C-nucleotide prodrug binds to the viral RNA-dependent-RNA polymerase () and inhibits the viral replication by terminating RNA transcription prematurely. It is reported in literature that interaction between the C-1'β-CN moiety of Remdesivir () and the Ser861 residue in enzyme, causes a delayed chain termination during the RNA replication process and is one of the important aspect of its mechanism of action. In the pursuance of increasing the biological activity of and enhancing the SAR studies, against RNA viruses, we have designed its fourteen C1'β substituted analogs, - bearing 4/5-membered heterocyclic rings.
View Article and Find Full Text PDFLately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs.
View Article and Find Full Text PDFTreatment of triple-negative breast cancer (TNBC) is very challenging as only few therapeutic options are available, including chemotherapy. Thus, a constant search for new and effective approaches of therapy that could potentially fight against TNBC and mitigate side effects is "turn-on". Recently, multitarget therapy has come up with huge possibilities, and it may possibly be useful to overcome several concurrent challenges in cancer therapy.
View Article and Find Full Text PDFAnti-Microbial Peptide Database version 1 (AMPDB v1) is a meticulously curated resource that aims to address the limitations of existing databases in the field of antimicrobial research. We have utilized the latest technology and put our best efforts into adding all relevant tools to cater to the needs of our users. AMPDB v1 is a derived database, built upon information gathered from the available resources and boasts a significant size of 59,122 entries which are classified into 88 classes.
View Article and Find Full Text PDFRadiation resistance is one of the major problems in the treatment of small cell lung cancer (SCLC). Most of these patients are given radiation as first-line treatment and it was observed that the initial response in these patients is very good. However, they show relapse in a few months which is also associated with resistance to treatment.
View Article and Find Full Text PDFMicro/nanobots are integrated devices developed from engineered nanomaterials that have evolved significantly over the past decades. They can potentially be pre-programmed to operate robustly at numerous hard-to-reach organ/tissues/cellular sites for multiple bioengineering applications such as early disease diagnosis, precision surgeries, targeted drug delivery, cancer therapeutics, bio-imaging, biomolecules isolation, detoxification, bio-sensing, and clearing up clogged arteries with high soaring effectiveness and minimal exhaustion of power. Several techniques have been introduced in recent years to develop programmable, biocompatible, and energy-efficient micro/nanobots.
View Article and Find Full Text PDFDue to the enhanced resistance of bacteria to antibiotics, researchers always try to find effective alternatives to treat drug-resistant bacterial infections. In this context, we have explored antimicrobial peptides (AMPs), which are a broad class of small peptide molecules, and investigated their efficacy as potent antibacterial and antibiofilm agents. AMPs can cause cell death either through disruption of the cell membrane or by inhibiting vital intracellular functions, by binding to RNA, DNA, or intracellular components upon transversion through the cell membrane.
View Article and Find Full Text PDFOral Squamous Cell Carcinoma (OSCC) accounts for more than 90% of all kinds of oral neoplasms that develop in the oral cavity. It is a type of malignancy that shows high morbidity and recurrence rate, but data on the disease's target genes and biomarkers is still insufficient. In this study, studies have been performed to find out the novel target genes and their potential therapeutic inhibitors for the effective and efficient treatment of OSCC.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2023
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule.
View Article and Find Full Text PDFBiofilm infections are highly resistant to commercial antibiotics. Therefore, developing a potent agent against such drug-resistant bacterial infections is highly desirable. Here, we synthesized positively charged silver nanoclusters (Ag NCs) with a diameter of <2 nm, which were found to be very effective antibacterial and antibiofilm agents against tetracycline-resistant and most importantly multidrug-resistant pathogenic strains of and .
View Article and Find Full Text PDFMol Biochem Parasitol
September 2022
Starvation is always accompanied by an increase in the ratio of AMP/ATP followed by activation of AMPK. It is one of the sensors for cellular energy status and is highly conserved across various species. Its role in the stage differentiation process of protozoan species like Giardia, Plasmodium, Trypanosome, and Toxoplasma has been reported.
View Article and Find Full Text PDFNearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry.
View Article and Find Full Text PDFUnlabelled: The novel coronavirus disease (COVID-19) has spread throughout the globe, affecting millions of people. The World Health Organization (WHO) has declared this infectious disease a pandemic. At present, several clinical trials are going on to identify possible drugs for treating this infection.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2021
Small cell lung cancer (SCLC) is known for its rapid growth with high metastatic spread. Its treatment remains a major challenge for oncologists due to the high mutation rate and other clinical disadvantages. The survival rate of these patients is very poor but there is no significant progress over the last few decades in the treatment protocols.
View Article and Find Full Text PDFCancer care has become a challenge with the current COVID-19 pandemic scenario. Specially, cancers like small cell lung cancers (SCLC) are difficult to treat even in the normal situation due to their rapid growth and early metastasis. For such patients, treatment can't be compromised and care must be taken to ensure their minimum exposure to the ongoing spread of COVID-19 infection.
View Article and Find Full Text PDFBiodegradable precursors for micro/nanobots development are key requirements for several sustainable applications. In this regard, we propose an innovative solution for water purification at minimum cost and efforts where organic waste is used for the treatment of organic pollutants. Herein, catalytic magnetic microbots were developed by functionalizing iron oxide nanoparticles with carbon dots (C-Dots), which were synthesized by using household waste such as potato peels as precursors.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
May 2021
The disease COVID-19 caused by SARS-CoV-2 is the third highly infectious human Coronavirus epidemic in the 21 century due to its high transmission rate and quick evolution of its pathogenicity. Genomic studies indicate that it is zoonotic from bats. The COVID-19 has led to significant loss of lives and a tremendous economic decline in the world.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.btre.
View Article and Find Full Text PDFAutonomously propelled micro/nanobots are one of the most advanced and integrated structures which have been fascinated researchers owing to its exceptional property that enables them to be carried out user-defined tasks more precisely even on an atomic scale. The unique architecture and engineering aspects of these manmade tiny devices make them viable options for widespread biomedical applications. Moreover, recent development in this line of interest demonstrated that micro/nanobots would be very promising for the water treatment as these can efficiently absorb or degrade the toxic chemicals from the polluted water based on their tunable surface chemistry.
View Article and Find Full Text PDFPrecise monitoring of the enzyme activity by a suitable modulator is one of the very fundamental aspects of drug designing that provides the opportunity to overcome the challenges of several diseases. Herein, inhibition of human Topoisomerase IIα enzyme which serves as a potential target site for several anti-cancer drugs is demonstrated by using ultra-small size gold nanoclusters (Au NCs) with the dimension comparable with size of the active site of the enzyme. Molecular dynamics simulation results demonstrate that the Au NCs strongly interact with the human Topo IIα enzyme at its active site or allosteric site depending on forms of enzyme.
View Article and Find Full Text PDFNearly 80% of human chronic infections are caused due to bacterial biofilm formation. The increased resistance against the conventional antimicrobial agents makes it difficult to treat the biofilm-related infections. The antibiotics resistance developed by planktonic cells has also become a major threat for human.
View Article and Find Full Text PDF