Publications by authors named "Sining Geng"

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

The practical implementation of aqueous Zn-ion batteries presents formidable hurdles, including uncontrolled dendrite growth, water-induced side reactions, suboptimal Zn metal utilization, and intricate Zn anode manufacturing. Here, large-scale construction of a highly oriented ZnO(002) lattice plane on Zn anode (ZnO(002)@Zn) with thermodynamic inertia and kinetic zincophilicity is designed to address such problems. Both theoretical calculations and experiment results elucidate that the ZnO(002)@Zn possesses high Zn chemical affinity, hydrogen evolution reaction suppression, and dendrite-free deposition ability due to the abundant lattice oxygen species in ZnO(002) and its low lattice mismatch with Zn(002).

View Article and Find Full Text PDF

Designing a cost-effective and multifunctional separator that ensures dendrite-free and stable Zn metal anode remains a significant challenge. Herein, a multifunctional cellulose-based separator is presented consisting of industrial waste-fly ash particles and cellulose nanofiber using a facile solution-coating method. The resulting fly ash-cellulose (FACNF) separators enable a high ion conductivity (5.

View Article and Find Full Text PDF

Given their plentiful reserves, impressive safety features, and economical pricing, aqueous zinc - ion batteries (ZIBs) have positioned themselves as strong competitors to lithium - ion batteries. Yet, the scarcity of available cathode materials poses a challenge to their continued development. In this study, a VO/VO heterostructure has been synthesized using a one - pot hydrothermal approach and employed as the cathode material for ZIBs.

View Article and Find Full Text PDF